92 Sr β^- decay 1972Ol03,1971Pa31

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012		

Parent: ⁹²Sr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.611$ h *17*; $Q(\beta^-)=1951$ *9*; $\%\beta^-$ decay=100.0 Others: 1956He77, 1957He39, 1979Bo26, 1990Ru05.

92Y Levels

The decay scheme is based on γ -ray singles and coincidence measurements by 1972O103 and 1971Pa31.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$
0.0	2-	3.54 h <i>1</i>
241.56 5	$(0^{-},2,3^{+})$	
430.51 [#] 3	(2)-	
892.56 12	(≤3)	
1383.90 4	1^{+}	

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] The order of the 430 γ , 953 γ cascade is not established in ⁹²Sr β^- decay data. Consequently, a level exists at either 430.56 5 or 953.31 7, and the authors chose the latter. 1956He77 reported E β =1500 *100*, which would support the 430-level option; however, 1957He39 observed no $\beta\gamma$ coincidences for E β >600 keV. The decay scheme implies negligible β^- feeding of either state since I(430 γ) and I(953 γ) are similar. (d, α) excites a (2,3,4)⁻ level at 440 keV *30*. The evaluator presumes that this confirms the 430-level option, and has ordered the 430 γ and 953 γ accordingly.

β^{-} radiations

1957He39 observed no $\beta\gamma$ coin for E β >600 keV.

E(decay)	E(level)	Iβ ^{-‡}	Log ft		Comments	
539 [†] 17 (1058 9) (1951 [#] 9)	1383.90 892.56 0.0	97 6 0.17 5 <8	$4.35 \ 4$ 8.09 13 >8.5 ^{1u}	av $E\beta$ =181.9 <i>34</i> av $E\beta$ =379.5 <i>39</i> av $E\beta$ =786.4 <i>41</i>		

[†] Weighted average of 536 20 (1983Ia02) and 546 30 (1978Wo15, from β -1384 γ coincidence spectrum). Q(β^-)=1951 9 (2011AuZZ) implies E β =567 9. Others: 545 keV 50 (1957He39), 550 keV 50 (1956He77).

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{92}Y)$

I γ normalization: from $\Sigma(I(\gamma+ce)$ to g.s.)=96% 4, derived assuming log $f^{lu}t>8.5$ to g.s. (which implies I β (g.s.)<8%). This is consistent with I γ normalization=0.90 10 based on measured I(1384 γ)=90% 10 (1957He39) obtained from comparison of β -decay rate (4 π flow proportional counter) with emission rate of ${}^{92}Y(1384\gamma)$. If no β^- branch existed to g.s., $\Sigma(I(\gamma+ce)$ to g.s.)=100% would imply I γ normalization=0.93 3, with no significant change in deduced log ft values. I γ normalization does not depend on the order of the 430 γ -953 γ cascade.

Measured: γ -ray singles with Ge(Li) (1972Ol03,1971Pa31), coincidences with Ge(Li)-Ge(Li) (1972Ol03), Ge(Li)-NaI (1971Pa31).

92 Sr β^- decay 1972Ol03,1971Pa31 (continued)

$\gamma(^{92}Y)$ (continued)

 $E\gamma$ and $I\gamma$ from both sources are in excellent agreement.

Measured average $E\gamma = 1130 \ 80 \ (1990 \text{Ru}05)$ cf. 1337 19 calculated for the adopted decay scheme using the code RADLST.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}@$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
241.56 [‡] 5 ^x 352.5 2	3.25 <i>13</i> 0.06 <i>1</i>	241.56	(0^-,2,3^+)	0.0	2-	
430.49 ^{‡#} 3	3.64 17	430.51	$(2)^{-}$	0.0	2^{-}	
491.27 17	0.305 28	1383.90	1+	892.56	(≤3)	
650.8 2	0.41 3	892.56	(≤3)	241.56	$(0^{-},2,3^{+})$	
892.68 24	0.089 17	892.56	(≤3)	0.0	2-	
953.31 [#] 7	3.91 16	1383.90	1^{+}	430.51	$(2)^{-}$	
1142.35 7	3.10 15	1383.90	1^{+}	241.56	$(0^{-},2,3^{+})$	
1383.93 5	100 3	1383.90	1+	0.0	2-	%I γ =90 4 assuming adopted I γ normalization.

[†] Weighted average of data from 1972Ol03 and 1971Pa31. An additional, weak line ($E\gamma$ =463.4 2, $I\gamma$ =0.04 *I*) reported in 1971Pa31 was not confirmed by 1972Ol03 ($I\gamma \le 0.015$); evaluator does not adopt this G.

[±] Weighted average of data from 1972Ol03, 1971Pa31, 1979Bo26.

[#] Note comment on 430 level regarding order of 430γ -953 γ cascade.

 $^{@}$ For absolute intensity per 100 decays, multiply by 0.90 5.

^x γ ray not placed in level scheme.

92 Sr β^- decay 1972Ol03,1971Pa31

