Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012

 $Q(\beta^{-}) = -4624 5$; S(n) = 11011 4; S(p) = 4006 7; $Q(\alpha) = -5.17 \times 10^{3} 6$ 2012Wa38 Note: Current evaluation has used the following Q record -4624 5 11009 5 4005 12 -5174 52 2011AuZZ.

Q(β⁻),S(n),S(p),Q(α) from 2011AuZZ; -4530 syst (300keV uncertainty), 11020 200, 4019 28, -5290 100, respectively, from 2003Au03.

 $Q(\varepsilon p)=426 5$ (2011AuZZ). Other Reactions:

⁴⁶Ti(⁵⁴Fe,5p3nγ), E(⁵⁴Fe)=225 MeV (1990IsZY): measured Eγ, γγ coin; searched for ns isomers; attributed a 257γ-500γ-1347γ cascade to ⁹²Tc, implying levels at 1347, 1847 and 2104. None of these transitions has been confirmed in subsequent (⁴⁰Ca,5pnγ) or (³⁵Cl,4p3nγ) studies, and the evaluator does not adopt them as transitions in ⁹²Tc. Furthermore, 1995Gh02 have reassigned all three transitions to ⁹⁴Ru.

For shell-model calculations see, e.g., 1974Gr36, 1976Se01, 1976Gr07, 1992Si15, 1995Gh02, 1996Tu03.

⁹²Tc Levels

The adopted level scheme is based on that of 1994Ar33 in (40 Ca,5pn γ). However, the evaluator has adopted several of the modifications suggested by 1995Gh02 in (35 Cl,4p3n γ): (i) the order of the 663 and 636 cascade gammas has been reversed, so the weaker γ lies higher in the cascade; (ii) the 1786 γ is placed so it directly feeds the (15⁺) 3588 level (an alternative placement given by 1994Ar33) because 1995Gh02 suggest that a 627 γ (not the 1786 γ) lies immediately above the 2058 γ , and the placement is shown as tentative because the 1786 γ was not observed by 1995Gh02; (iii) an 1108 γ -1938 γ cascade is added feeding the (17⁻) 4787 level (as in 1995Gh02) but, owing to the strength of the 1108 γ in 1995Gh02, the evaluator allows that it may be a doublet there and retains 1994Ar33's placement of an 1108 γ from the (15⁻) 4048 level; (iv) the 1986 γ is placed feeding the (15⁻) 4048 level (as in 1995Gh02), instead of the (16⁻) 4716 level (1994Ar33); (v) addition of 1015.2 γ , 1051.6 γ . Additional inconsistencies between the level schemes of 1994Ar33 and 1995Gh02 center on whether there are two levels near 2002 keV and whether the 647 γ is a doublet (see comment on E(2002 levels)).

See 1994Ar33, 1995Gh02, 1996Tu03 for further discussion of possible configuration assignments for ⁹²Tc levels.

Cross Reference (XREF) Flags

			A B C	92 Ru ε decay 92 Mo(3 He,2np γ) 92 Mo(3 He,t)	D E F	${}^{92}Mo(p,n\gamma)$ ${}^{58}Ni({}^{40}Ca,5pn\gamma),$ ${}^{64}Zn({}^{35}Cl,4p3n\gamma)$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments
0.0 ^{<i>a</i>}	$(8)^{+}$	4.25 min 15	ABCDEF	$\% \varepsilon + \% \beta^+ = 100$		
				J^{π} : log <i>ft</i> =5.4 for ⁹² , to 6 ⁺ 2612 level is $T_{1/2}$: weighted avera (1964Va05), 4.52 statistical weights.	$\begin{array}{c} \Gamma c \varepsilon \\ s \ wea \\ ge \ of \\ min \ l \end{array}$	decay to 8 ⁺ (89% branch); log ft =5.7 to 7 ⁺ ; ε decay k or nonexistent; $\sigma(\theta)$ systematics in (³ He,t). ξ 4.5 min 5 (1948Mo18), 4.0 min 1 and 4.4 min 4 '2 (1985Be12), using method of limitation of relative
213.75 ^{<i>a</i>} 7	(6+)	<1 ns	ABCD	T _{1/2} : from (p,n γ). J ^{π} : 5.6 ⁺ from (³ He,t); J=(5 based on Hauser-Feshbach analysis in $(p,n\gamma)$.
270.09 ^{<i>a</i>} 8	(4 ⁺)	1.03 µs 7	ABCD	J ^{π} : 3 ⁺ ,4 ⁺ from (³ He to J=(6) 214 level T _{1/2} : from (p,n γ).	,t); J=	=4 based on Hauser-Feshbach analysis in $(p,n\gamma)$; E2 56 γ
389.19 ^a 22	(5 ⁺)		BCD	J^{π} : 5,6 ⁺ from (³ He,t probable, by analo); J=: gy to	5 based on Hauser-Feshbach analysis in $(p,n\gamma)$; π =+ ⁸⁸ Y and ⁹⁰ Nb.
529.42 ^a 13	(3+)	$\leq 0.1 \ \mu s$	ABCD	J^{π} : 259 γ is D to (4 ⁺); 224	$^{1}\gamma$ from 1 ⁺ 2771; 3 ⁺ ,4 ⁺ from (³ He,t); $J^{\pi}=1,2^{-},3^{+}$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹²Tc Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
				based on Hauser-Feshbach analysis in $(p,n\gamma)$.
				$T_{1/2}$: from ⁹² Ru ε decay.
576.88 ^a 13	(2^{+})	<2 ns	ABCD	J^{π} : 134 γ is D from 1 ⁺ 711; M1 47 γ to (3 ⁺).
(2) (2) 2	(_	$T_{1/2}$: from (p,n γ).
626.3 <i>3</i>	(4,6 ⁺)		В	J^{n} : J=(4,6) from ΔJ =1 237 γ to (5 ⁺) 389; 6 ⁺ favored by shell-model
				calculations (19/6Se01) which predict a configuration= $((\pi g_{9/2})^3)/2 \otimes (\nu$
(0(14) 17	(0 ⁺)		DC DD	$(g_{9/2})^{-1})6^{+1}$ level near this energy (1983Fi08).
686.14 ^a 1/	(9 ⁺)	-0.1	BC FF	J^{π} : from ("He,t); 686 γ is D to (8)".
/11.33 15	1	$\leq 0.1 \ \mu s$	AB D	J [*] : from log $ft=4.9$ from 0 [*] ² Ru parent.
06562	(6^{+})		DC	$I_{1/2}$: Irom ²⁻ Ku ε decay. $M_{\rm e}$ D 576to (5 ⁺). Largebally not 5, from $\varepsilon(0)$ in (³ He 2ngc). 5.6 ⁺
903.0 3	(0.)		BC	J [*] : D 5707 to (5 [*]); J probably not 5, from $\gamma(\theta)$ in (*He,2np γ); 5,6 [*]
111934			R	I^{π} : γ to $I - (4.6^+)$ 626 level. See comment on I(1129 level)
1129 20	<3		Č	I^{π} : from (³ He t) If I(626 level) were 4 this level would presumably
1129 20			C	correspond to 1119 level in $({}^{3}\text{He 2nny})$ whose I would then be limited to
				(2.3).
1161.91 <i>16</i>	$(0^+, 1)$		AB	J^{π} : γ from 1 ⁺ ; log <i>ft</i> =6.3 3 (log $f^{1u}t=7.6$ 2) for weak ε branch from 0 ⁺ ;
	· · · ·			585 γ to (2 ⁺) 577. Possible candidate for 0 ⁺ anti-analog state (1976Se01).
1163.6 11			В	J^{π} : γ ray to (6 ⁺).
1222 20	≤3		С	J^{π} : from (³ He,t).
1324 25	≤3		С	J^{π} : from (³ He,t).
1355.48 [@] 17	(10^{+})		B EF	J^{π} : D 669 γ to (9 ⁺); (E2) 1355 γ to (8) ⁺ ; π =(+) based on branching in
				$({}^{3}\text{He},2np\gamma)$; yrast selectivity in $({}^{3}\text{He},2np\gamma)$ favors J=10.
1443.86 16	1+		AC	XREF: C(1453).
1407 10 15	-2			J^{π} : from log <i>ft</i> =5.2 from 0 ⁺ parent; (1 ⁺ ,2 ⁺ ,4 ⁻) from (³ He,t).
1487.1975	≤ 3		A	J [*] : 910 γ to (2 ⁺) 577; γ from 1 ⁺ .
1302.80 22	(0,8)		Б	$J : \Delta J=0$ or 2 to (0) in ('He,2npy); branching and ry lavor $\pi=+$ if $J=8$
1580 1 1	(7.8)		R	I^{π} : α to I<6: $\alpha(A)$ in $({}^{3}\text{He 2nn})$ allows I-4 to 8 if I(626 level)-6 but
1507.1 4	(7,0)		b	strong population in $({}^{3}\text{He} 2\text{npy})$ favors high spin $(1983\text{Fi}08)$
1613 25	<3		C	I^{π} : from (³ He t)
1796.54 16	1+		A	I^{π} : from log $f_{t=5,1}$ from 0^{+92} Ru parent.
1980.49 17	≤3		A	J^{π} : γ rays to 1 ⁺ and (2 ⁺).
2001.8 ^{#@} 11	$(12^+)^{\ddagger}$		EF	
2002.7 <mark>#&</mark> _3	(11^{-})	3 15 ns 20	BE	u = +8.87.22 (1996Tu03)
2002.7 5	(11)	5.15 115 20	2 2	μ ; from g-factor=+0.806 20 measured using TDPAD, assuming J=11.
				J^{π} : measured g-factor is close to that calculated for a configuration=((π
				$p_{1/2}(\pi g_{9/2})^4 (\nu g_{9/2})^{-1})$ state, and to that known for analogous 11 ⁻ state
				in ⁹⁰ Nb (1996Tu03).
				$T_{1/2}$: from time differential perturbed angular distribution in (²⁸ Si,p3n γ)
				(1996Tu03). Other $T_{1/2}$: 1.9 ns 4 (DSAM, after corrections for prompt
2106.0.4	1+			component and deorientation effects; 1994Ar33).
2100.9 4	1' 1+		A A	J': IFOM log $ft=3.1$ IFOM U' parent. I^{π} : from log $ft=4.8$ from 0^+ parent.
2390.92.15	1+		A	J ^{π} from log $ft=4.1$ from 0 ⁺ parent.
2548 9 ^{&} 1	(12^{-})		R FF	I^{π} , D+O 546v to (11 ⁻) with δ favoring M1+E2. I. Le likely in (⁴⁰ Ca 5nna)
2570.7 = 7	$(12^+)^{\ddagger}$		D EF	VDEE : $E(2632)$
2004.7 13	(15)		LL	F(level): the adopted order of the 636y-663y cascade is based on Iv in
				$(^{35}Cl.4p3n\gamma)$: E(level)=2637.6 in $(^{40}Ca.5pn\gamma)$ because, there, the order of
				the cascade γ 's is reversed.
2770.96 19	1^{+}		Α	J^{π} : from log $ft=4.4$ from 0^+ parent.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹²Tc Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2940.0 ^{&} 4 3004.7 3 3048.0 3	$(13^{-})^{\ddagger}$ 1 ⁺ 1 ⁺	B EF A A	J^{π} : (12 ⁺) suggested in (³⁵ Cl,4p3n γ). J^{π} : from log <i>ft</i> =4.5 from 0 ⁺ parent. J^{π} : from log <i>ft</i> =4.8 from 0 ⁺ parent.
3069.4 7 3301.0 [@] 18 3563.4 ^{&} 7	$(13^{-})^{\ddagger}$ $(14^{+})^{\ddagger}$ $(14^{-})^{\ddagger}$	EF EF EF	
3587.9 [@] 20 3709.1? 4 3813 30	$(15^+)^{\ddagger}$ 1 ⁺ 0 ⁺	EF A C	J ^{π} : log <i>ft</i> =4.7 from 0 ⁺ parent. J ^{π} : from (³ He,t); isobaric analog of ⁹² Mo g.s.
4048.0 ^{&} 9 4615.0 <i>12</i> 4716.4 <i>12</i>	$(15^{-})^{\ddagger}$ $(16^{-})^{\ddagger}$	EF F EF	J^{π} : 1052 γ to (14 ⁻) 3563.
4786.8 ^{&} 12 5373.5? [@] 23	$(17^{-})^{\ddagger}$ $(16^{+}, 17^{+})^{\ddagger}$	EF E	E(level): an alternative placement of the 1786 γ (between a 7431-keV (18 ⁺ ,19 ⁺) level and the 5646 level) was suggested in (⁴⁰ Ca,5pn γ); however, a 627 γ ? feeds the 5646 level
5646.2 <i>23</i> 6033.7 <i>13</i>	(17 ⁺)	EF EF	and the 1786 γ is absent in (³⁵ Cl,4p3n γ). J ^{π} : Q γ to (15 ⁺); possible configuration is ((π g _{9/2}) ⁵ 25/2 ⁺) \otimes (ν g _{9/2}) ⁻¹ (1994Ar33). E(level),J ^{π} : 6701.7 25, (17 ⁻ ,18 ⁻) in (⁴⁰ Ca,5pn γ) because, there, the 1986 γ was placed feeding the (16 ⁻) 4716 level.
6272.9? 25 6725.2 <i>16</i> 7833.1 <i>19</i>	(19 ⁻) (21 ⁻)	F F F	J ^π : from (³⁵ Cl,4p3nγ); Q γ to (17 ⁻). J ^π : Q γ to (19 ⁻) in (³⁵ Cl,4p3nγ).

[†] From least-squares fit to $E\gamma$, allowing 1 keV uncertainty in $E\gamma$ data for which authors did not quote uncertainty, except for levels excited only in (³He,t).

[‡] From (⁴⁰Ca,5pn γ), based on γ anisotropy and the assumptions that all observed γ 's have $J_i \ge J_f$, most have $J_i > J_f$ and that crossover transitions are E2, unless noted otherwise.

[#] Two levels at or near 2002 keV, each deexcited by an $E\gamma \approx 647$ keV transition, are proposed in (⁴⁰Ca,5pn γ) to account for observed Doppler splitting of 1355 γ in coin spectra gated by 394 γ , 485 γ , 495 γ , 545 γ , 622 γ and 1067 γ . Alternatively, an isomeric level slightly above the 2001 level may deexcite to the latter via an unobserved, highly converted low-energy transition. However, the inconsistency between 647 $\gamma(\theta)$ in (³He,2pn γ), 647 γ anisotropy in (⁴⁰Ca,5pn γ) and DCO ratio in (³⁵Cl,4p3n γ) suggests that the 647 γ is indeed a doublet whose components deexcite states which have been populated to differing extents in the different reactions. The evaluator adopts this scenario, even though 1995Gh02 conclude from their (³⁵Cl,4p3n γ) data that the 646 γ is not a doublet.

^(a) Band(A): Seniority ≥ 4 , yrast $\pi = +$ states. Probable configuration= $((\pi p_{1/2})^2 (\pi g_{9/2})^3 (\nu g_{9/2})^{-1})$ for J=10 to J ≤ 15 levels (1994Ar33).

⁽¹⁾ ⁽¹⁾

^{*a*} Band(C): π =+, seniority 2 states. Configuration=((π 1g_{9/2})(ν 1g_{9/2})) (1973Ha02). Dominance of this seniority=2 configuration based on population in (³He,t).

$\gamma(^{92}\text{Tc})$

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f J	f Mult. [†]	α ^{<i>a</i>}	Comments
213.75	(6 ⁺)	213.75 7	100	0.0 (8)	+ (E2)	0.0822	B(E2)(W.u.)>47
							E _{γ} : weighted average of 213.8 2 from (³ He,2np γ), 213.81 <i>12</i> from ε decay and 213.7 <i>1</i> from (p,n γ). Mult.: D.E2 from RUL: adopted ΔJ =(2).
270.09	(4+)	56.34 2	100	213.75 (6+) E2	9.79	B(E2)(W.u.)=3.6 3 Mult.: from $\alpha(\exp)$, ⁹² Ru ε decay.
389.19	(5^{+})	119.1 [@] 2	100	270.09 (4+) [M1]	0.172	
529.42	(3+)	259.32 12	100	270.09 (4+) (M1)	0.0216	$B(M1)(W.u.) \ge 1.2 \times 10^{-5}$
							E _y : weighted average of 259.4 2 from (³ He,2npy) and 259.27 15 from ε decay. Mult : 259x is D from (³ He 2npy); adopted $\Delta \pi = (n_0)$
576.88	(2 ⁺)	47.46 <i>3</i>	100 10	529.42 (3+) M1	2.35	B(M1)(W.u.)>0.030 Multi from $g(up)$ 92Bu a decay D from BLU
		306.8.2	1 14 10	270.09 (4+	(F2)	0.0237	Null.: from $\alpha(\exp)$, γ -Ku ε decay. D from KOL. B(F2)(Wu)>0.014
		500.0 2	1.11110	270.09 (1) (112)	0.0207	Mult.: D,E2 from RUL; level scheme requires $\Delta J=2$ and $\Delta \pi=no$.
626.3	$(4,6^{+})$	237.1 [@] 2	100	389.19 (5+) D		Mult.: $\Delta J=1$ from $\gamma(\theta)$ in (³ He,2np γ).
686.14	(9 ⁺)	686.2 [@] 2	100	0.0 (8)	+ (M1)		Mult.: D from (⁴⁰ Ca,5pn γ) and (³ He,2np γ); $\Delta \pi$ from level scheme.
711.33	1^{+}	134.57 8	100	576.88 (2+) (M1)	0.1228	$B(M1)(W.u.) \ge 8.0 \times 10^{-5}$
							E_{γ} : weighted average of 134.4 2 from (³ He,2npγ) and 134.60 9 from ε decay. Mult.: D from (³ He,2npγ); adopted $\Delta \pi$ =(no).
965.6	(6 ⁺)	576.4 [@] 2	100	389.19 (5+) D		Mult.: $\Delta J=1$ from $\gamma(\theta)$ in (³ He,2np γ).
1119.3		493.0 [@] 2	100	626.3 (4,0	(5^{+})		
1161.91	$(0^+, 1)$	450.7 1	100 3	711.33 1+			
		585.0 2	8.6 10	576.88 (2+)		
1163.6		198@	100	965.6 (6+)		
1355.48	(10^{+})	669.4 ^{@} 2	29 ^{@} 3	686.14 (9+) D		Mult.: from $\gamma(\theta)$ in (³ He,2np γ).
		1355.4 ^{@} 2	100 [@] 11	0.0 (8)	+ (E2)		Mult.: Q from (⁴⁰ Ca,5pn γ) and (³ He,2np γ); $\Delta \pi$ from level scheme.
1443.86	1+	867.0 1	100	576.88 (2+)		
1487.19	≤ 3	910.2 I	100	570.88 (2 ⁺)		
1502.86	(6,8')	1289.1 2	100	213.75 (6))		
1589.1	(/,8) 1 ⁺	962.8 2	100	626.3 (4,0)	1)		
1790.34	1	121967	100.5	576.88 (2+	,1 <i>)</i>		
1980.49	≤3	1268.9 3	21 3	711.33 1+)		
	_	1403.6 2	100 6	576.88 (2+)		
2001.8	(12 ⁺)	646.3 ^{&} 10	100	1355.48 (10	+) (Q)		E_{γ} ,Mult.: γ unresolved from D 647.2 γ in (⁴⁰ Ca,5pn γ) where anisotropy of doublet is consistent with stretched Q; thus, mult=Q is favored for this component.

4

From ENSDF

 $^{92}_{43}{
m Tc}_{49}$ -4

						Adopted	Levels, Gam	mas (continued)
							$\gamma(^{92}\text{Tc})$ (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	Comments
2002.7	(11 ⁻)	647.2 2	100	1355.48	(10 ⁺)	(E1+M2)	+0.10 3	B(E1)(W.u.)= $3.85 \times 10^{-7} 25$; B(M2)(W.u.)= $0.04 3$ E _y : from (³ He,2npy); Ey given as 646.8 <i>10</i> in (⁴⁰ Ca,5pny) for unresolved component of doublet. Mult. δ : D+O from $\gamma(\theta)$ in (³ He,2npy); however, 647 γ is a doublet in
								$({}^{40}\text{Ca},5\text{pn}\gamma)$, so δ may not be reliable. E1 is favored over M1 because $B(M1)(Wu)=2.55\times10^{-5}$ 17 would be atypically small.
2106.9	1+	945.0.3	100	1161.91	$(0^+, 1)$			2(11)(((a)) 200/10 1/ ((ould be a)prouily shaan
2316.02	1+	1604.7 1	100 4	711.33	1+			
		1738.5 5	8.9 18	576.88	(2^{+})			
2390.92	1+	410.4 1	19.5 4	1980.49	≤3			
		594.3 2	6.4 7	1796.54	1+			
		903.6 1	8.5 5	1487.19	≤3			
		947.2 <i>3</i>	29 <i>3</i>	1443.86	1+			
		1229.1 <i>1</i>	36.5 21	1161.91	$(0^+, 1)$			
		1679.6 <i>1</i>	100 4	711.33	1+			
		1814.0 6	2.1 5	576.88	(2^{+})			
2548.9	(12 ⁻)	546.2 2	100	2002.7	(11 ⁻)	(M1+E2)	-0.18 10	E _γ : from (³ He,2npγ). E _γ =545.0 10 in (⁴⁰ Ca,5pnγ). Mult.: D+Q from $\gamma(\theta)$ in (³ He,2npγ); Δπ from level scheme.
2664.7	(13^{+})	662.9 ^{&} 10	100	2001.8	(12^{+})	D		
2770.96	1+	974.3 2	9.2 14	1796.54	1+			
		2059.7 2	100 6	711.33	1+			
		2194.3 5	23.3 22	576.88	(2^+)			
		2241.3 5	7.5 25	529.42	(3^{+})			
2940.0	(13-)	391.1 2	100	2548.9	(12^{-})	D		E_{γ} : from (³ He,2np γ). $E\gamma$ =393.6 10 in (⁴⁰ Ca,5pn γ), 393.4 in (³⁵ Cl,4p3n γ).
3004.7	1^{+}	1517.6 3	100 5	1487.19	≤3			
		2427.5 5	36 4	576.88	(2^+)			
3048.0	1^{+}	656.3 10	26 13	2390.92	1+			
		1560.7 5	100 10	1487.19	≤3			
		2471.2 3	27 5	576.88	(2^+)			
		2519.3 10	12.5	529.42	(3^{+})			25
3069.4	(13-)	521.0 ^{&} 10	85 ^{&} 15	2548.9	(12 ⁻)	D		Other I γ : 28 5 in (³⁵ Cl,4p3n γ), but see comment on 1066.7 γ . Mult.: from (³⁵ Cl,4p3n γ).
		1066.7 ^{&} 10	100 ^{&} 15	2002.7	(11 ⁻)	Q		Mult.: Q from (⁴⁰ Ca,5pn γ). D from unenumerated DCO ratio in (³⁵ Cl,4p3n γ), where I(1067 γ)/I(521 γ) is much larger than in (⁴⁰ Ca,5pn γ); this may indicate that 1067 γ is a doublet in (³⁵ Cl,4p3n γ).
3301.0	(14^{+})	636.3 <mark>&</mark> 10	100	2664.7	(13^{+})	D		Mult.: from $({}^{35}\text{Cl},4p3n\gamma)$.
3563.4	(14 ⁻)	494.6	100 8	3069.4	(13 ⁻)	D		$E_{\gamma}, I_{\gamma}, Mult.$: from $(^{35}Cl, 4p3n\gamma)$; doublet in $(^{40}Ca, 5pn\gamma)$.
		622.2 ^{&} 10	<49	2940.0	(13 ⁻)			I _{γ} : from (³⁵ Cl,4p3n γ); however, I γ <52 <i>10</i> from (⁴⁰ Ca,5pn γ) (where γ is complex).

S

From ENSDF

 $^{92}_{43}{
m Tc}_{49}$ -5

L

					Ac	lopted Le	vels, Gam	mas (continued)
						$\gamma(^{9}$	² Tc) (con	tinued)
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [†]	α^{a}	Comments
								Mult.: Q (interpreted as M2) in (35 Cl,4p3n γ), but D from (40 Ca,5pn γ). However, if M2 and I $\gamma \approx 50$, T _{1/2} (3563 level) exceeds ≈ 5 ns (based on RUL).
3563.4	(14 ⁻)	1015.2	10	2548.9	(12 ⁻)			E_{γ}, I_{γ} : from (³⁵ Cl,4p3n γ); not reported in (⁴⁰ Ca,5pn γ).
3587.9	(15 ⁺)	286.9 <mark>&</mark> 10	100	3301.0	(14^{+})	D		Mult.: from $({}^{35}\text{Cl},4p3n\gamma)$.
3709.1?	1+	938.1 ^b 4	100 40	2770.96	1^{+}			
		2997.4 <mark>b</mark> 10	36 16	711.33	1^{+}			
		3133.0 ^b 10	40 20	576.88	(2^{+})			
4048.0	(15 ⁻)	484.6 <mark>&</mark> 10	100 <mark>&</mark> 11	3563.4	(14 ⁻)	D		
		1108.0 <mark>&</mark> 10	22 ^{&} 5	2940.0	(13 ⁻)			Placement from $({}^{40}Ca,5pn\gamma)$ only.
4615.0		1051.6	100	3563.4	(14 ⁻)			E_{γ} : from (³⁵ Cl,4p3n γ).
4716.4	(16 ⁻)	668.5 <mark>&</mark> 10	100	4048.0	(15 ⁻)			
4786.8	(17 ⁻)	70.6 ^{&} 10	41 ^{&} 7	4716.4	(16 ⁻)	(M1)	0.75 4	Mult.: D from (⁴⁰ Ca,5pn γ); Q crossover γ from same level.
		738.6 <mark>&</mark> 10	100 ^{&} 15	4048.0	(15 ⁻)	Q		
5373.5?	$(16^+, 17^+)$	1785.6 <mark>&b</mark> 10	100	3587.9	(15^{+})			
5646.2	(17^{+})	2058.3 <mark>&</mark> 10	100	3587.9	(15 ⁺)	Q		Mult.: from $({}^{35}\text{Cl},4p3n\gamma)$.
6033.7		1985.6 <mark>&</mark> 10	100	4048.0	(15 ⁻)			
6272.9?		626.7 <mark>b</mark>	100	5646.2	(17^{+})			E_{γ} : from (³⁵ Cl,4p3n γ).
6725.2	(19 ⁻)	1938.4	100	4786.8	(17 ⁻)	Q		E_{γ} ,Mult.: from (³⁵ Cl,4p3n γ).
7833.1	(21 ⁻)	1107.9	100	6725.2	(19 ⁻)	Q		Eγ from (35 Cl,4p3nγ). Based on strength of this γ, the evaluator suggests that it might be a doublet in this reaction.

[†] From γ anisotropy ratio and reaction systematics in (⁴⁰Ca,5pn γ), except when noted otherwise.

[‡] From $\gamma(\theta)$ in (³He,2np γ).

From ε decay, except as noted. @ From (³He,2np γ).

6

[&] From (⁴⁰Ca,5pn γ); evaluator assigns authors' upper limit of $\Delta E=1$ keV to $E\gamma$.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{92}_{43}{
m Tc}_{49}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

. ...

Adopted Levels, Gammas

(9 ⁺)		686.14
(2+)		576.88
(3+)	47	529.42
(5+)	307 250	389.19
(4+)	255	270.09
(6+) 0	56	213.75
	214	
(8)+		0.0

⁹²₄₃Tc₄₉