⁹²Rb β⁻ decay 2006Lh01,1980Al08,1972Ol03

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

Parent: ⁹²Rb: E=0.0; $J^{\pi}=0^-$; $T_{1/2}=4.48 \text{ s} 3$; $Q(\beta^-)=8095 6$; $\%\beta^-$ decay=100.0

Others: 2001Ko07, 1992GrZX, 1992Gr06, 1992Pr03, 1991Ma05, 1990Ru05, 1988GrZX, 1983Ia02, 1982Al01, 1980De02, 1979Bo26, 1978St02, 1978Wo15, 1970MaZC.

1972Ol03: E γ , I γ , $\gamma\gamma$ coin.

1980Al08: $\gamma\gamma$ coin, $\gamma\gamma(\theta)$.

2006Lh01: %I(815γ).

2011Ta26: segmented total absorption spectrometer measurements to determine γ cascade multiplicities; No details given.

⁹²Sr Levels

The decay scheme is that proposed by 1972O103, and modified by 1980A108. 1980A108 place one new γ ray (1071.4 γ) and relocate 1465 γ , 1239 γ on the basis of coincidence information, implying new levels at 2054 and 2850 keV. 1980A108 find no evidence for the 2624? keV level proposed by 1972O103, and thus leave the 97 γ unplaced; they also confirm the 2088-level proposed tentatively by 1972O103.

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	0+	2.611 h 17	$T_{1/2}$: adopted value.
814.98 <i>4</i>	2+	8 ps <i>3</i>	
1384.79 9	2+	5.1 ps 24	
1778.33 12	$2^{(+)}$	≤5.0 ps	
2053.9 6	(2^{+})	•	
2088.39 18	$0^{(+)}$		
2140.82 14	1^{+}	7.1 ps 25	
2527.18 18	0^{+}	6 ps 4	
2783.6 4			
2820.90 18	$2^{(+)},(1)$		
2849.6 6			
4637.8 5	1		
5053.8 4	1		
5738.4 9	1		
5893.5 7	$1^{(-)}$		
5901.1 <i>10</i>	$1^{(-)}$		
6003.5 7	1-		
6030.0 8	1-		
6116.1 <i>10</i>	1-		
6949.1? 7	0-,1-		
7363.0 8	1-		

 † From Adopted Levels.

[‡] From $\beta \gamma \gamma(t)$ (1991Ma05), except as noted.

β^{-} radiations

E(decay)†	E(level)	Iβ ^{−‡@}	Log ft	Comments
(732 6)	7363.0	0.26 6	3.97 11	av E β =246.0 24
$(1979 \ 6)$ $(2065 \ 6)$	6116.1 6030.0	0.16 5	5.85 <i>14</i> 5 78 <i>12</i>	av $E\beta = 790.2 \ 28$ av $E\beta = 829.9 \ 28$
$(2005 \ 6)$ $(2092 \ 6)$	6003.5	0.30 6	5.67 9	av $E\beta = 842.1\ 28$

Continued on next page (footnotes at end of table)

⁹²Rb β⁻ decay 2006Lh01,1980Al08,1972Ol03 (continued)

β^- radiations (continued)

E(decay)†	E(level)	Iβ ^{-‡@}	Log ft	Comments
(2194 6)	5901.1	0.17 5	6.00 13	av E β =889.6 29
(2202 6)	5893.5	0.16 4	6.04 11	av E β =893.1 28
(2357 6)	5738.4	0.17 4	6.13 11	av E β =965.4 29
(3041 6)	5053.8	0.22 5	6.49 10	av $E\beta = 1288.0\ 29$
(3457 6)	4637.8	0.33 7	6.55 10	av E β =1486.0 29
(5245 6)	2849.6	0.051 15	8.17 <i>13</i>	av E β =2344.8 29
(5274 6)	2820.90	0.54 9	7.15 8	av E β =2358.6 29
(5568 6)	2527.18	0.31 6	9.39 ¹ <i>u</i> 9	av E β =2494.1 29
(5954 6)	2140.82	0.15 4	7.95 12	av E β =2686.7 29
(6007 6)	2088.39	0.141 24	7.99 8	av $E\beta = 2712.0\ 29$
(6041 ^{&} 6)	2053.9	0.035 14	10.57 ¹ <i>u</i> 18	av Eβ=2722.2 29
(6317 6)	1778.33	0.11 5	$10.19^{1u} 20$	av E β =2855.1 29
(6710 6)	1384.79	0.43 10	9.77 ¹ <i>u</i> 11	av $E\beta = 3045.2\ 29$
(7280 6)	814.98	1.0 3	9.63 ¹ <i>u</i> 13	av Eβ=3320.7 29
8104 [#] 8	0.0	95.2 7	5.751 5	av Eβ=3719.4 29
				Log ft: unreasonably low for a first-forbidden transition.

[†] Measured average E β =3460 230 (1982Al01), 3770 150 (1990Ru05) cf. 3638 28 calculated for the adopted decay scheme using the code RADLST.

[±] From intensity imbalance At each level.

[#] Weighted average of 8111 *15* (1980De02), 8095 *25* (1988GrZX), 8107 *15* (1992Pr03) and 8096 *16* (1992GrZX). Other Q(β⁻) measurements: 8100 *50* (2001Ko07), 8091 *15* (Blonnigen, unpublished datum quoted in 1992Pr03), 8080 *30* (1983Ia02), 7980 *100* (1978St02), 8080 *160* (1978Wo15), 8050 *50* (1978Wu04), 8180 *130* (1970MaZC).

[@] Absolute intensity per 100 decays.

[&] Existence of this branch is questionable.

⁹²**Rb** $β^-$ decay 2006Lh01,1980Al08,1972Ol03 (continued)

 $\gamma(^{92}{\rm Sr})$

Iy normalization: from $\% I\gamma(815\gamma)=3.2 \ 4 \ (2006Lh01)$. This implies $\% I\beta(g.s.)=100-\Sigma(I(\gamma+ce) \text{ to } g.s.)=95.2 \ 7 \ (\%\beta^-n \text{ is negligible})$, consistent with $I\beta(g.s.)=94 + 6-20$ deduced indirectly by 1972Ol03 from integrated γ intensity ratio for ^{92}Rb .⁹²Sr, from I(1384 γ)=90% 10 in $^{92}\text{Sr}\ \beta^-$ decay and from the ^{92}Rb decay scheme. note that the above 95% I β (g.s.) results in log ft=5.75, lower than expected for this 0⁻ to 0⁺ β^- decay. (log $ft\geq5.9$ implies I β (g.s.) $\leq70\%$). As noted by 2006Lh01, any unreported I γ to g.s. would reduce I β (g.s.) and hence raise log ft. Q(β^-) is large, so decay scheme could be incomplete; however, the RADLST code indicates a total energy release of 8136 45 for this decay scheme. In satisfactory agreement with Q=8095 6 and $\%\beta^-=100$. Average E $\gamma=393 \ 32 \ (1990\text{Ru05})$ cf. 208 10 calculated for the adopted decay scheme using the code RADLST.

 E_{ν}^{\ddagger} $I_{\nu}^{\ddagger j}$ α^{\dagger} δ# Mult.# E_i (level) Comments Ef J^{π} x96.7 6 0.49 23 a 0.00485 7 2527.18 0^{+} 2140.82 1+ (M1) $\alpha = 0.00485$ 7; $\alpha(K) = 0.00429$ 6; $\alpha(L) = 0.000472$ 7; 386.1 3 0.76 13 $\alpha(M) = 7.93 \times 10^{-5}$ 12; $\alpha(N+..) = 1.060 \times 10^{-5}$ 15 $\alpha(N)=9.95\times10^{-6}$ 14; $\alpha(O)=6.48\times10^{-7}$ 10 Mult., δ : pure D from $\gamma\gamma(\theta)$; $\Delta\pi$ =No from level scheme. b $2^{(+)}$ 1384.79 2+ (M1)^b 393.5 1 3.8 2 1778.33 0.00463 7 $\alpha = 0.00463$ 7; $\alpha(K) = 0.00410$ 6; $\alpha(L) = 0.000450$ 7; $\alpha(M)=7.57\times10^{-5}$ 11; $\alpha(N+..)=1.012\times10^{-5}$ 15 $\alpha(N)=9.50\times10^{-6}$ 14: $\alpha(O)=6.19\times10^{-7}$ 9 Mult., δ : pure D from $\gamma\gamma(\theta)$: $\Delta\pi$ =(No) from level scheme. 17.0 10 1384.79 2^{+} 814.98 2+ 0.00196 3 α =0.00196 3; α (K)=0.001737 25; α (L)=0.000189 3; 569.8 1 (M1+E2) +0.212 $\alpha(M)=3.18\times10^{-5}$ 5; $\alpha(N+..)=4.26\times10^{-6}$ 6 $\alpha(N)=4.00\times10^{-6}$ 6; $\alpha(O)=2.61\times10^{-7}$ 4 $0^{(+)}$ d (E2)^d α =0.001389 20; α (K)=0.001227 18; α (L)=0.0001361 20; 703.6 3 1.4 3 2088.39 1384.79 2+ 0.001389 20 $\alpha(M) = 2.28 \times 10^{-5} 4; \alpha(N+..) = 3.03 \times 10^{-6}$ $\alpha(N)=2.85\times10^{-6}$ 4; $\alpha(O)=1.81\times10^{-7}$ 3 -0.09^{f} 3 0.001026 15 $\alpha = 0.001026 \ 15; \ \alpha(K) = 0.000909 \ 13; \ \alpha(L) = 9.84 \times 10^{-5} \ 14;$ 756.0 2 3.4 3 2140.82 1^{+} 1384.79 2+ $M1(+E2)^{j}$ $\alpha(M)=1.652\times10^{-5}$ 24; $\alpha(N+..)=2.22\times10^{-6}$ $\alpha(N)=2.08\times10^{-6}$ 3; $\alpha(O)=1.366\times10^{-7}$ 20 814.98[@] 3 100 6 $\alpha = 0.000949 \ 14$; $\alpha(K) = 0.000839 \ 12$; $\alpha(L) = 9.23 \times 10^{-5} \ 13$; 0.000949 14 814.98 2^{+} $0.0 \quad 0^+$ E2 $\alpha(M)=1.550\times10^{-5}$ 22; $\alpha(N+..)=2.06\times10^{-6}$ $\alpha(N)=1.94\times10^{-6}$ 3; $\alpha(O)=1.239\times10^{-7}$ 18 $2^{(+)}$ 814.98 2+ 0.000625 20 $\alpha = 0.000625 \ 20; \ \alpha(K) = 0.000553 \ 17; \ \alpha(L) = 6.02 \times 10^{-5} \ 24;$ 963.5 2 4.6 4 1778.33 +1.7 +13-15 (E2+M1) $\alpha(M)=1.01\times10^{-5}$ 4; $\alpha(N+..)=1.35\times10^{-6}$ 5 $\alpha(N)=1.27\times10^{-6}$ 5; $\alpha(O)=8.22\times10^{-8}$ 19 1071.4[&] 0.4 2849.6 1778.33 2(+) 1238.9 6 1.1 4 2053.9 (2^{+}) 814.98 2+ $(E2+M1)^{l}$ 0.000372 6 $\alpha = 0.000372$ 6; $\alpha(K) = 0.000318$ 5; $\alpha(L) = 3.43 \times 10^{-5}$ 5; $\alpha(M)=5.75\times10^{-6}$ 9; $\alpha(N+...)=1.36\times10^{-5}$ 17 $\alpha(N)=7.23\times10^{-7}$ 11; $\alpha(O)=4.74\times10^{-8}$ 7; α (IPF)=1.29×10⁻⁵ 17

S

	92 Rb β^- decay 2006Lh01,1980Al08,1972Ol03 (continued)									
γ ⁽⁹² Sr) (continued)										
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ #	α^{\dagger}	Comments	
1273.4 2	3.0 4	2088.39	0 ⁽⁺⁾	814.98	2+	(E2) ^C	С	0.000360 5	$\begin{aligned} &\alpha = 0.000360 \ 5; \ \alpha(\text{K}) = 0.000300 \ 5; \ \alpha(\text{L}) = 3.24 \times 10^{-5} \ 5; \\ &\alpha(\text{M}) = 5.44 \times 10^{-6} \ 8; \ \alpha(\text{N}+) = 2.22 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 6.83 \times 10^{-7} \ 10; \ \alpha(\text{O}) = 4.45 \times 10^{-8} \ 7; \\ &\alpha(\text{IPF}) = 2.14 \times 10^{-5} \ 3 \end{aligned}$	
1325.8 2	4.2 5	2140.82	1+	814.98	2+	E2+M1 ^e	-0.27 ^e 5	0.000339 5	$ \begin{array}{l} \alpha = 0.000339 \ 5; \ \alpha(\mathrm{K}) = 0.000277 \ 4; \ \alpha(\mathrm{L}) = 2.97 \times 10^{-5} \ 5; \\ \alpha(\mathrm{M}) = 4.99 \times 10^{-6} \ 7; \ \alpha(\mathrm{N}+) = 2.75 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 6.28 \times 10^{-7} \ 9; \ \alpha(\mathrm{O}) = 4.15 \times 10^{-8} \ 6; \ \alpha(\mathrm{IPF}) = 2.68 \times 10^{-5} \\ 5 \end{array} $	
1384.6 <i>3</i>	11.0 20	1384.79	2+	0.0	0+	E2		0.000332 5	$ \begin{array}{l} \alpha = 0.000332 \ 5; \ \alpha(\mathrm{K}) = 0.000252 \ 4; \ \alpha(\mathrm{L}) = 2.72 \times 10^{-5} \ 4; \\ \alpha(\mathrm{M}) = 4.55 \times 10^{-6} \ 7; \ \alpha(\mathrm{N}+) = 4.84 \times 10^{-5} \ 7 \\ \alpha(\mathrm{N}) = 5.72 \times 10^{-7} \ 8; \ \alpha(\mathrm{O}) = 3.74 \times 10^{-8} \ 6; \ \alpha(\mathrm{IPF}) = 4.78 \times 10^{-5} \\ 7 \end{array} $	
1399.0 6	1.6 5	2783.6		1384.79	2+					
1464.7 6	1.2 4	2849.6		1384.79	2+		a		5	
1712.3 2	13.1 10	2527.18	0+	814.98	2+	E2 ^g	8	0.000360 5	$\alpha = 0.000360 \ 5; \ \alpha(\text{K}) = 0.0001655 \ 24; \ \alpha(\text{L}) = 1.772 \times 10^{-3} \ 25; \alpha(\text{M}) = 2.97 \times 10^{-6} \ 5; \ \alpha(\text{N}+) = 0.0001740 \alpha(\text{N}) = 3.74 \times 10^{-7} \ 6; \ \alpha(\text{O}) = 2.46 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.0001736 25$	
1778.3 <i>10</i> ^x 1789.2 <i>9</i>	1.1 <i>6</i> 1.2 <i>6</i>	1778.33	2 ⁽⁺⁾	0.0	0+					
1816.7 5	1.8 4	4637.8	1	2820.90	$2^{(+)},(1)$					
1895.1 6	1.7 5	6949.1?	0-,1-	5053.8	1 2+					
1908.0 0	2.10	2783.0	$2^{(+)}$ (1)	014.90	2 2+	h	h			
2000.5 5	2.2.0	2020.90	2, (1)	2820.90	$\frac{2}{2^{(+)}}$ (1)					
2820.6.2	18.8.14	2820.90	$2^{(+)}(1)$	2020.90	0^+					
2860.3 21	0.8 8	4637.8	2 ,(1) 1	1778.33	$2^{(+)}$					
2913.2 6	2.2 6	5053.8	1	2140.82	1+					
3110.0 7	3.0 9	5893.5	$1^{(-)}$	2783.6						
3502.0 16	1.1 7	6030.0	1-	2527.18	0^{+}					
3670.8 12	1.3 6	5053.8	1	1384.79	2^+					
3823.6 10	1.1 /	4637.8	1	814.98	2+					
x4427 9 9	398	5055.8	1	014.90	2					
4508.2 12	1.9 5	5893.5	$1^{(-)}$	1384.79	2+					
4637.7 9	6.7 9	4637.8	1	0.0	0^{+}					
4809.3 ^k 15	3.2 16	6949.1?	$0^{-}, 1^{-}$	2140.82	1+					
4835.9 11	3.1 8	7363.0	1-	2527.18	0^{+}					
4922.6 11	3.3 6	5738.4	1	814.98	2+					
5086.2 12	2.6 12	5901.1	1-	814.98	2 ⁺ 2 ⁺					
J100.1 ð	1.5 15	0003.5	1	014.98	Z					

4

$\gamma(^{92}$ Sr) (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger j}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
5215.1 10	3.3 12	6030.0	1-	814.98 2+	x5632.2 10	6.0 10				
^x 5248.7 12	3.3 8				5739.4 14	2.1 8	5738.4	1	0.0	0^{+}
5301.7 <i>13</i>	2.5 8	6116.1	1-	814.98 2+	^x 5879.4 15	2.1 8				
^x 5376.6 15	1.8 8				5900.6 14	2.8 8	5901.1	$1^{(-)}$	0.0	0^{+}
^x 5497.7 13	2.5 7				6004.1 15	1.8 6	6003.5	1-	0.0	0^{+}
^x 5573.7 17	2.5 15				6030.0 15	2.4 7	6030.0	1-	0.0	0^{+}
5584.2 11	5.0 10	7363.0	1^{-}	1778.33 2 ⁽⁺⁾	6114.8 15	2.5 8	6116.1	1-	0.0	0^{+}

[†] Additional information 1.

[‡] From 1972Ol03, unless indicated otherwise.

[#] From $\gamma\gamma(\theta)$, assuming no γ ray seen in coin spectrum has L>2, that $\geq 10\%$ Q admixture indicates mult=M1+E2, and that J=2 states with significant branching to 0⁺ g.s. have π =+ (1980A108).

[@] From 1979Bo26.

[&] From 1980Al08.

^{*a*} $\delta(386\gamma)$ in table 1 (summary of $\gamma\gamma(\theta)$ results) of 1980Al08 is a misprint; quoted δ is for 2007 γ .

^b 394γ - (570γ) - $815\gamma(\theta)$ gives δ =-1.1 11 for 2(D,Q)2(Q,D)2(Q)0⁺, 394γ - $1385\gamma(\theta)$ gives δ =+0.07 5 for 2(D,Q)2(Q)0⁺ and 394γ - $570\gamma(\theta)$ gives δ =-0.04 +4-5 for 2(D,Q)2(D,Q)0 cascade. Evaluator assumes mult=pure D for 394γ .

^c $1273\gamma-815\gamma(\theta)$ gives A₂=+0.30 11, A₄=+1.25 20 implying $0(Q)2(Q)0^+$ cascade.

 $d^{-704\gamma-(570\gamma)-815\gamma(\theta)}$, $704\gamma-1385\gamma(\theta)$ (A₂=+0.40 14, A₄=+1.60 26) and $704\gamma-570\gamma(\theta)$ imply $0(Q)2(Q,D)2(Q)0^{+}$, $0(Q)2(Q)0^{+}$ and 0(Q)2(D,Q)2 cascades.

^{*e*} 1326 γ -815 $\gamma(\theta)$ gives δ =-0.27 5 for 1(D,Q)2(Q)0⁺ cascade.

f 756γ-(570γ)-815γ(θ), 756γ-1385γ(θ) and 756γ-570γ(θ) give δ =-0.10 *12*, -0.04 *4* and -0.12 *3* for 1(Q,D)2(Q)0⁺, 1(Q,D)2(Q)0⁺ and 1(Q,D)2(Q)0⁺ cascades, respectively. Evaluator adopts weighted average value, δ =-0.09 *3*.

^g $1712\gamma-815\gamma(\theta)$ has A₂=+0.33 3, A₄=+1.18 6 indicating a $0(Q)2(Q)0^+$ cascade.

^h 2007γ-815γ(θ) gives δ (D,Q)<-0.53 for a 2(D,Q)2(Q)0 cascade; however, J(2821 level)=1 also possible. Note that table 1 of 1980Al08 (summary of γγ(θ) results) incorrectly ascribes this δ to 386γ (a J=0 to J=1 transition).

^{*i*} 1239 γ -815 $\gamma(\theta)$ gives δ <-3.3 or >+11.8 for 2(Q,D)2(Q)0⁺ cascade.

^{*j*} For absolute intensity per 100 decays, multiply by 0.032 4.

^k Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁹²Rb $β^-$ decay 2006Lh01,1980Al08,1972Ol03

6

92 Rb β^- decay 2006Lh01,1980Al08,1972Ol03

7