⁹³Rb β⁻n decay 1982Kr11,1985Gr15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012

Parent: ⁹³Rb: E=0.0; $J^{\pi}=5/2^{-}$; $T_{1/2}=5.84$ s 2; $Q(\beta^{-}n)=2176$ 9; $\%\beta^{-}n$ decay=1.39 7

⁹³Rb-Q from 2011AuZZ. Other: 2179 8 (2003Au03).

 93 Rb-J^{π},T_{1/2}: From 1997Ba13.

Additional information 1.

Others: 1980Kr07, 1981Ho07.

1985Gr15: TRISTAN ISOL facility; gas-filled proton recoil proportional counters, pulse-shape discrimination (FWHM \approx 2-11 keV for E(n)<200 keV); measured β^- delayed n energy spectrum, E(n)=14 to \approx 1300.

1982Kr11: OSTIS mass separator; measured n- γ , $\beta\gamma$, $\gamma\gamma$ coincidences. Assumed I(953 γ)=3.78% 25 in ⁹²Sr β^- decay (cf. value of 3.52% 24 adopted here).

1981Ho07: OSIRIS mass separator; measured $E\gamma$, $I\gamma$, I(n).

1980Kr07: ³He ionization chamber; measured β^- delayed-neutron spectrum. Deduced S(n).

92Sr Levels

E(level) [†]	J ^{π‡}
0.0	0^{+}
814.7	2+
1384.5	2^{+}
1778.1	$2^{(+)}$
2088.1?	$0^{(+)}$

[†] From 1982Kr11; uncertainties not stated by authors.

[‡] From Adopted Levels.

$\gamma(^{92}\mathrm{Sr})$

Iy normalization: from $\Sigma(I(\gamma+ce)$ to g.s.)=1.39% 7, based on $\%\beta^-n$ for ⁹³Rb recommended in evaluation by 2011Ba40.

Ε _γ ‡	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
393.5	1.4	1778.1	2 ⁽⁺⁾	1384.5 2+	(M1)		0.00463 7	$ \begin{array}{c} \alpha = 0.00463 \ 7; \ \alpha(\text{K}) = 0.00410 \ 6; \\ \alpha(\text{L}) = 0.000450 \ 7; \ \alpha(\text{M}) = 7.57 \times 10^{-5} \\ 11; \ \alpha(\text{N}+) = 1.012 \times 10^{-5} \ 15 \\ \alpha(\text{N}) = 9.50 \times 10^{-6} \ 14; \ \alpha(\text{O}) = 6.19 \times 10^{-7} \\ 9 \end{array} $
569.8	3.1	1384.5	2+	814.7 2+	(M1+E2)	+0.21 2	0.00196 3	α =0.00196 3; α (K)=0.001737 25; α (L)=0.000189 3; α (M)=3.18×10 ⁻⁵ 5; α (N+)=4.26×10 ⁻⁶ 6 α (N)=4.00×10 ⁻⁶ 6; α (O)=2.61×10 ⁻⁷ 4
814.7	100	814.7	2+	0.0 0+	E2		0.000950 14	$\begin{aligned} &\alpha = 0.000950 \ 14; \ \alpha(\text{K}) = 0.000840 \ 12; \\ &\alpha(\text{L}) = 9.24 \times 10^{-5} \ 13; \\ &\alpha(\text{M}) = 1.551 \times 10^{-5} \ 22; \\ &\alpha(\text{N}+) = 2.06 \times 10^{-6} \\ &\alpha(\text{N}) = 1.94 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 1.240 \times 10^{-7} \\ &18 \end{aligned}$
963.5	1.7	1778.1	2 ⁽⁺⁾	814.7 2+	(E2+M1)	+1.7 +13-15	0.000625 20	$\begin{split} &\alpha{=}0.000625\ 20;\ \alpha({\rm K}){=}0.000553\ 17;\\ &\alpha({\rm L}){=}6.02{\times}10^{-5}\ 24;\\ &\alpha({\rm M}){=}1.01{\times}10^{-5}\ 4; \end{split}$

				⁹³ Rb	β^- n decay	⁷ 1982Kr11	,1985Gr15 (continued)
						$\gamma(^{92}\mathrm{Sr})$ (cont	inued)
E _γ ‡	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.#	$lpha^{\dagger}$	Comments
1384.6 ^{&}		1384.5	2+	0.0 0+	E2	0.000332 5	$ \frac{\alpha(N+)=1.35\times10^{-6} 5}{\alpha(N)=1.27\times10^{-6} 5; \alpha(O)=8.22\times10^{-8} 19} \\ \alpha=0.000332 5; \alpha(K)=0.000252 4; \alpha(L)=2.72\times10^{-5} 4; \alpha(M)=4.55\times10^{-6} 7; \alpha(N+)=4.84\times10^{-5} 7 \\ \alpha(N)=5.72\times10^{-7} 8; \alpha(O)=3.74\times10^{-8} 6; \alpha(IPF)=4.78\times10^{-5} 7 $
1778.3	0.5	1778.1	2 ⁽⁺⁾	$0.0 \ 0^+$			

[†] Additional information 2. [‡] From 1982Kr11; uncertainties not stated by authors.

[#] From Adopted Gammas.

[@] For absolute intensity per 100 decays, multiply by 0.0138 7.
[&] Placement of transition in the level scheme is uncertain.

Delayed Neutrons (⁹²Sr)

E(n) [‡]	E(⁹² Sr)	$I(n)^{\dagger @}$	$E(^{93}Sr)^{\#}$	Comments
28			5318	
66			5356	
114			5404	
158			5448	E(n): other: 153 (1980Kr07) for possible doublet.
188			5478	E(n): from 1980Kr07. Other: 202 (1974Ru07).
234			5524	E(n): other: 231 (1985Gr15).
266			5556	
309			5599	E(n): other: 308 (1985Gr15).
371			5661	E(n): from 1980Kr07, other: 375 (1985Gr15).
398			5688	E(n): from 1980Kr07.
454			5744	E(n): other: 457 (1985Gr15).
484			5774	
521			5811	
545			5835	E(n): from 1980Kr07.
606			5896	
636			5926	E(n): other: 631 (1985Gr15).
663			5953	
684			5974	
701			5991	
729			6019	
773			6063	E(n): from 1980Kr07.
815			6105	
862			6152	E(n): from 1980Kr07.
979			6269	
1260			6550	
	0.0	85 <i>3</i>		
	814.7	14 <i>3</i>		
	1384.5	0.5 3		
	1778.1	0.4 2		
	2088.1?	< 0.1		

[†] Partial branching, given by 1982Kr11 as % of total n-emission probability; there exists only a 2175-keV window for delayed-n emission to ⁹²Sr and branches to all but the 1673, 1993?, 2054, 2088, 2141 levels within it are reported. 1981H007, unable to

⁹³Rb β⁻n decay 1982Kr11,1985Gr15 (continued)

Delayed Neutrons (92Sr) (continued)

detect the weaker n-branches, report I(n to g.s.):I(n to 815 level)=87.5 19:12.5 19; also, $I(432\gamma, {}^{93}Sr)/I(n)=9.86$.

- [‡] E(n)(c.m.). For E(n)<200, agreement between different studies is only fair, and the superior-resolution data of 1985Gr15 are adopted. For $E(n)\ge 200$, data are taken from 1980Kr07; in instances where the authors do not quote E(n), the evaluator has deduced it from the authors' proposed E(level) and assumed S(n). Values of E(n) quoted by 1980Kr07 are indicated.
- [#] Highly tentative. From measured E(n) (Δ E unstated) and S(n)=5290 8 (2011AuZZ), assuming neutrons populate ⁹²Sr(g.s.). Different ⁹³Sr level energies were deduced in 1980Kr07 because authors assumed S(n)=5230 6, the value deduced by 1980Kr07 based on correlation between energy spacing for delayed-neutron groups and ⁹³Sr level energy differences known from ⁹³Rb β^- decay.

[@] For absolute intensity per 100 decays, multiply by 0.0139 7.