¹⁵⁹Tb(³⁶S,fxng) 2002St06

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012				

2002St06: ¹⁵⁹Tb(³⁶S,fxng), E=165 MeV; GAMMASPHERE detector array (93 Compton-suppressed Ge detectors In 17 angular rings, preceded by Ta and Cu absorbers to attenuate x rays); measured Eγ, Iγ, γγγ coin, DCO ratios (triple angular correlations); shell-model calculations (π f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2} and ν p_{1/2}, g_{9/2}, d_{5/2} orbitals relative to ⁶⁶Ni core).

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	0^{+}	J^{π} : from Adopted Levels.
814.5 [#] 5	2+	J^{π} : from Adopted Levels.
1672.9 [#] 7	(4^{+})	
2184.5 7	(3-)	
2765.2 7	(5 ⁻)	
2924.3 9		
3014.1 [@] 8	(4+)	J ^{π} : authors note that 5 ⁻ or 6 ⁺ cannot be totally excluded, but favor 4 ⁺ . possible dominant configuration: π (1p ⁻¹ _{3/2} 1p _{1/2}) ₂ ν (1d ⁴ _{5/2}) ₂) (2002St06). possible configuration: π (1p ⁻¹ _{3/2} 1p _{1/2}) ₂ ν (1d ⁴ _{5/2}) ₄) (2002St06).
3128.3 9	(6^{+})	possible configuration: $\pi (1p_{3/2}^{-1} \ 1p_{1/2})_2 \ \nu(1d_{5/2}^4)_4) \ (2002St06).$
3361.9 7	(5 ⁻)	
3558.0 9	(7^{-})	J^{π} : authors note that 6 ⁻ cannot be totally excluded.
3785.4 [@] 8	(6+)	J^{π} : authors note that 7 ⁻ cannot be totally excluded. Possible dominant configuration: $\pi (1p_{3/2}^{-1} 1p_{1/2})_2 \nu(1d_{5/2}^4)_4$ (2002St06) if J=6; however, adopted π =- and shell-model calculations predict the second 6 ⁺ state At somewhat higher energy.
4020.8 8	(7^{-})	
4927.9 9		
5056.1 10		
5726.6 [@] 11		
6527.1? [@] 12		

[†] From least-squares fit to $E\gamma$.

[‡] Authors' tentative values, except As noted. Consistent with observed DCO ratios, but assigned primarily by analogy with ⁹⁰Sr. [#] Band(A): π =+ sequence. Based on 0⁺ g.s. principal configuration: $\nu \, 1d_{5/2}^4$ (2002St06).

 (^{92}Sr)

[@] Band(B): sequence based on 3014 level.

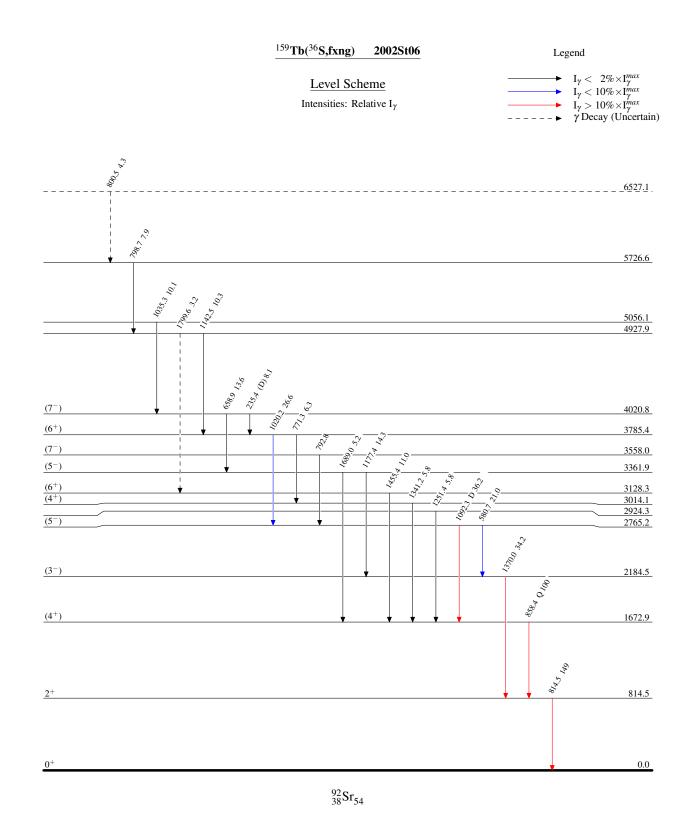
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
235.4 5	8.1 3	4020.8	(7 ⁻)	3785.4 (6+)	(D)	E_{γ} , I_{γ} : contaminated by strong 235γ from ¹⁹⁰ Tl. Mult.: DCO=0.63 <i>17</i> , ΔJ=2 858γ In gate.
580.7 5	21.0 6	2765.2	(5 ⁻)	2184.5 (3 ⁻)		Mult.: DCO=1.5 6 for $\Delta J=1$ 1370 γ In gate.
658.9 <i>5</i>	13.6 5	4020.8	(7^{-})	3361.9 (5 ⁻)		
771.3 5	6.3 <i>3</i>	3785.4	(6^{+})	3014.1 (4+)		E_{γ} : contaminated by a ¹⁹¹ Tl line.
792.8 5		3558.0	(7 ⁻)	2765.2 (5 ⁻)		E_{γ} : contaminated by a ¹⁹¹ Tl line. Mult.: DCO=1.5 5 for ΔJ =1 1092 γ In gate; May be unreliable due to ¹⁹¹ Tl contamination of G.
798.7 <i>5</i>	7.96	5726.6		4927.9		
800.5 [@] 5 814.55	4.3 <i>3</i> 149 2	6527.1? 814.5	2+	5726.6 0.0 0 ⁺		
858.4 <i>5</i> 1020.2 <i>5</i>	100 <i>I</i> 26.6 7	1672.9 3785.4	(4^+) (6 ⁺)	814.5 2 ⁺ 2765.2 (5 ⁻)	Q	Mult.: see comment on 1092 γ . E _{γ} ,I _{γ} : possibly an unresolved doublet, so I γ May be

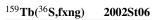
Continued on next page (footnotes at end of table)

¹⁵⁹ Tb(³⁶ S,fxng) 2002St06 (continued)							
γ (⁹² Sr) (continued)							
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
							overestimated. Mult.: DCO=1.0 3 for $\Delta J=1$ 1092 γ In gate; May be unreliable due to complex nature of G. Interpreted by authors As $\Delta J=2$ transition.
1035.3 5	10.1 6	5056.1		4020.8	(7^{-})		
$x \approx 1037$							assignment to ⁹² Sr is uncertain.
1092.3 5	36.2 8	2765.2	(5 ⁻)	1672.9	(4+)	D	DCO= $0.56\ 15$, Q 858γ In gate; consistent with pure stretched D for 1092γ and stretched Q for 858γ .
1142.5 5	10.3 4	4927.9		3785.4	(6^{+})		, , ,
1177.4 5	14.3 4	3361.9	(5^{-})	2184.5	(3^{-})		
1251.4 5	5.8 5	2924.3		1672.9	(4^{+})		
1341.2 5	5.8 <i>3</i>	3014.1	(4+)	1672.9	(4 ⁺)		E_{γ} : contaminated by a 1345γ of unknown origin. Mult.: DCO=1.0 4, Q 858γ In gate; however, result May be unreliable due to contamination of this transition by an impurity G. interpreted by authors As ΔJ =0 transition.
1370.0 5	34.2 7	2184.5	(3^{-})	814.5	2+		
1455.4 5	11.0 6	3128.3	(6^+)	1672.9			Mult.: DCO=1.1 6, $\Delta J=2$ 858 γ In gate.
1689.0 5	5.2 3	3361.9	(5-)	1672.9	(4+)		, , ,
1799.6 [@] 5	3.2 3	4927.9		3128.3	(6 ⁺)		

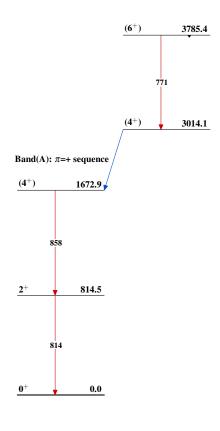
[†] Authors state that uncertainties range from 0.1 keV to 0.5 keV; evaluator has conservatively assigned 0.5 keV for all transitions.

[±] Relative intensity from spectrum gated on the 814.5 γ and normalized so I(858 γ)=100.


[#] Based on measured DCO ratio; expected DCO ratios are 0.9-1.1 for $\Delta J=2$ (or D $\Delta J=0$) γ gated by $\Delta J=2 \gamma$ or $\Delta J=1 \gamma$ gated


by $\Delta J=1 \gamma$, 0.6-0.8 for pure D γ gated by $\Delta J=2 \gamma$, and 1.25-1.67 for $\Delta J=2$ (or D $\Delta J=0$) γ gated by pure D transition.

[@] Placement of transition in the level scheme is uncertain.


 $x \gamma$ ray not placed in level scheme.

 ${}^{92}_{38}{
m Sr}_{54}{
m -}3$

