⁹²Rh ε decay (4.66 s) 2004De40,1999Zh04

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012				

Parent: ⁹²Rh: E=0+x; J^{π}=(\geq 6⁺); T_{1/2}=4.66 s 25; Q(ϵ)=11302 5; % ϵ +% β ⁺ decay=100.0

⁹²Rh-Q(ε): From 2011AuZZ; 11050 500 (2003Au03, from systematics).

⁹²Rh-E: whether this level is the ground state of ⁹²Rh or the isomer is not apparent according to 2004De40. Hence, the absolute energy of the state is not determined.

 92 Rh-T_{1/2}: From time behaviour of the 163 γ , 340 γ , 818 γ , and 919 γ , measured using a macrocycle of a beam-on followed by a beam-off period, with on/off times tailored to suit the expected half-life of the isotope under study.

1999Zh04: source from 150 MeV ⁴⁰Ca bombardment of 90% enriched ⁵⁸Ni target, 1.125 s wide chopped beam; four HPGe detectors; measured E γ , I γ , $\gamma\gamma$ coin (80 ns coincidence time resolution), γ - γ^{\pm} coin.

2002Ku21: source from ⁵⁸Ni(³⁶Ar¹⁰⁺,P_n), E=130 MeV mid-target; measured E γ (5 transitions), $\beta^{-}\gamma$ coin, T_{1/2}(92RH).

2004De40: ⁹²Rh source produced using the ⁵⁸Ni(³⁶Ar¹⁰⁺,pn) reaction; E=135 MeV beam degraded to 120 MeV At target center by Ta foils to take advantage of the 368 μ b reaction cross-section maximum (as calculated by HIVAP code); recoils from target were stopped and neutralized In 500 mbar of purified Ar gas inside a cell, then selectively ionized using two dye lasers tuned to the resonant atomic transitions of Rh to strongly enhance its ionization and extraction; laser-ionized nuclei guided towards LISOL mass separator by a sextupole ion guide; two HPGe detectors arranged in compact configuration around β -sensitive plastic Δ E-E detectors enclosing the tape station; measured singles and β -gated γ spectra, E γ (E<4 MeV), I γ , $\gamma\gamma$, $\beta\gamma$ coin, T_{1/2}(PARENT).

The decay scheme is that of 2004De40. Since feeding is observed to the 2675 (6⁺) state (probably an allowed branch) and also to the 2838 (8⁺) level, 2004De40 suggest J^{π} (\geq 6⁺) for the 4.66 s ⁹²Rh parent. Whether this is the ⁹²Rh g.s. is unclear, but shell-model calculations (2004De40) predict E \leq 600 keV for the first 2⁺,4⁺,6⁺,8⁺ and 9⁺ levels; for such energies, ε decay to both the (6⁺) 2675 and the 3015 levels appears to be allowed. However, it must be remembered that this decay scheme may be seriously incomplete (Q+ \approx 11300, E γ >4 MeV undetected).

⁹²Ru Levels

E(level) [†]	J^{π}
0.0	0^{+}
865.7 1	(2^{+})
1856.8 4	(4^{+})
2674.6 4	(6^{+})
2775.9 4	
2837.7 4	(8^{+})
3014.5 4	(≥5)

[†] From $E\gamma$.

[‡] From Adopted Levels.

$arepsilon,eta^+$:	radiations
---------------------	------------

E(decay)	E(level)	Ιβ ⁺ #	Ie#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(8288 5)	3014.5	43 4	0.39 4	5.1	43 4	av E β =3411.0 25; ε K=0.007810 16; ε L=0.0009514 2; ε M+=0.0002235 5
(8464 5)	2837.7	8.2 24	0.070 20	5.9	8.3 24	av E β =3497.5 25; ε K=0.007282 15; ε L=0.0008870 1; ε M+=0.0002084 5 Log <i>ft</i> : if J ^{π} (parent)=6 ⁺ , this value is unrealistically low compared with that expected for a Δ J=2, $\Delta \pi$ =No ε branch.
(8526 5)	2775.9	9.9 20	0.082 16	5.8	10 2	av Eβ=3527.7 25; εK=0.007109 14; εL=0.0008659 1; εM+=0.0002034 4
(8627 5)	2674.6	25 5	0.20 4	5.5	25 5	av Eβ=3577.3 25; εK=0.006837 14; εL=0.0008327 1;

Continued on next page (footnotes at end of table)

⁹²Rh ε decay (4.66 s) 2004De40,1999Zh04 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ #	Iɛ#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(9445 5)	1856.8	14 6	0.08 4	5.9	14 6	εM+=0.0001956 4 av Eβ=3978.6 25; εK=0.005076 9; εL=0.0006180 1; εM+=0.0001452 3 Log ft: value is unrealistically low for a ΔJ=2, Δπ=No ε branch.

[†] $\varepsilon + \beta^+$ feeding to ground and excited states in ⁹²Ru was deduced by 2004De40 from I(γ^\pm) after correction for contributions from other α =92 nuclides; this indicated branches to the g.s. and first 2⁺ state of at least 25% and 5%, respectively, inconsistent with the meaningful branches observed to (6⁺) and (8⁺) states. Additionally, two half-life components were observed in the time behaviour of the 866 γ . Consequently, the authors concluded that their ⁹²Rh source contained both high- and low-spin isomers and I(866 γ) was apportioned between them based on the two-component fit to its time behavior. All 511 γ events that could not be associated with γ events visible in the ⁹²Rh decay spectra were assigned by 2004De40 to the g.s. branch from the low-spin isomer. given the large Q+ and an inability to observe E γ >4 MeV, a number of weak decay branches May consequently have been overlooked and the branchings deduced for the reported levels (especially the g.s. branch) will be correspondingly uncertain and are shown here for completeness alone.

[‡] Values were calculated assuming decay is from ⁹²Rh g.s.; see also the general comment on I(γ +ce). 2004De40 consider them to be lower limits, At best.

[#] Absolute intensity per 100 decays.

ν(92	R	n	١
<i>x</i> (1/	u	J

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]
163.1 2	6.8 20	2837.7	(8^{+})	2674.6 (6 ⁺)	E2	0.225
339.9 2	43 4	3014.5	(≥5)	2674.6 (6 ⁺)		
817.8 <i>1</i>	76 9	2674.6	(6^{+})	1856.8 (4 ⁺)	(E2)	
865.7 1	103 15	865.7	(2^{+})	$0.0 0^+$	(E2)	
919.1 <i>1</i>	10 2	2775.9		1856.8 (4 ⁺)		
991.1 <i>3</i>	100	1856.8	(4^{+})	865.7 (2 ⁺)	(E2)	

[†] From 2004De40.

[‡] From Adopted Gammas.

[#] Absolute intensity per 100 decays.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁹²Rh ε decay (4.66 s) 2004De40,1999Zh04

Decay Scheme

 $^{92}_{44}{
m Ru}_{48}$