92 Rh ε decay (0.53 s) 2004De40

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

Parent: ⁹²Rh: E=0+y; $J^{\pi}=(2^+)$; $T_{1/2}=0.53 \text{ s } 37$; $Q(\varepsilon)=11302 5$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁹²Rh-Q(ε): from 2011AuZZ; 11050 500 (2003Au03, from systematics).

 92 Rh-T_{1/2}: measured using a macrocycle of a beam-on period followed by a beam-off period, with on/off times tailored to suit the expected half-life of the isotope under study. A time-to-digital converter, started at the beginning of each macrocycle, recorded the time of each triggered event relative to the start.

⁹²Rh source produced using the ⁵⁸Ni(³⁶Ar¹⁰⁺,pn) reaction and E=120 MeV At center of target after degradation of 135 MeV beam by Ta degraders to take advantage of the cross section maximum of 368 μ b; recoils from target were stopped and neutralized by 500 mbar of purified Ar gas; reaction products selectively ionized according to Z, using two dye lasers tuned to the resonant atomic transitions of Rh to strongly enhance its ionization and extraction; laser-ionized nuclei guided towards the LISOL mass separator by a sextupole ion guide; 2 HPGe detectors arranged in compact configuration around β -sensitive plastic Δ E-E detectors enclosing the tape station; measured E γ (E<4 MeV), I γ , $\gamma\gamma$ coin, $\beta\gamma$ coin, $T_{1/2}$ (92RH).

The decay scheme is from 2004De40.

A calculation of feeding to the observed levels based on $I(\gamma^{\pm})$ after correction for contributions from other α =92 nuclides indicates feeding to the g.s. and first 2⁺ state of ⁹²Ru As well As to (6⁺) and (8⁺) levels In ⁹²Ru. Additionally, 2004De40 find evidence for two half-life components in the time behaviour of the 866 γ . 2004De40 interpret this as evidence for the existence of both low-spin and high-spin states in ⁹²Rh source.

⁹²Ru Levels

E(level) [†]	J ^{π‡}	Comments		
0.0	0^{+}	$I(\gamma+ce)=77\ 23$, log $ft=4.6$ deduced by 2004De40, inconsistent with a $\Delta J=2$, $\Delta \pi=No$ branch; probably $I(\gamma+ce)$		
865.7 1	(2 ⁺)	I(γ +ce)=23 10, log ft=4.9 deduced by 2004De40; probably unreliable due to incompleteness of the decay scheme.		

[†] From $E\gamma$.

[‡] From Adopted Levels.

$\gamma(^{92}Ru)$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \ \mathbf{J}_f^{\pi}$	Mult.‡
865.7 1	100	865.7	(2 ⁺)	$0.0 0^+$	(E2)

[†] From 2004De40.

[‡] From Adopted Gammas.

$^{92}\mathbf{Rh} \ \varepsilon \ \mathbf{decay} \ (\mathbf{0.53 \ s})$ 2004De40

Decay Scheme

Intensities: Relative I_{γ}

