		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012	

 $Q(\beta^{-}) = -7.9 \times 10^{3} \text{ syst}; S(n) = 1.23 \times 10^{4} \text{ syst}; S(p) = 2049 5; Q(\alpha) = -3.74 \times 10^{3} 15$ 2012Wa38

Note: Current evaluation has used the following Q record -7.9E3 syst 12.28E3SY 2049 5 -3745 6 2011AuZZ.

 $Q(\beta^-)$, S(n), S(p), Q(α) from 2011AuZZ; -7860 640, 12330 570, 1990 710, -3080 450, respectively, from systematics (2003Au03). $Q(\epsilon_p)$ =5699 5 (2011AuZZ).

Uncertainty in Q(β^{-}), S(n) is 500, 400 respectively (2011AuZZ).

Production: Ni(¹⁰⁶Cd,x), E(¹⁰⁶Cd)=60 MeV/nucleon (1994He28,1995Mo26,1995He39); fragment mass separator with 150 ns flight path. ¹¹²Sn (E=112 GeV) on Be (2000WeZZ).

⁹²Rh Levels

Cross Reference (XREF) Flags

A ${}^{58}\text{Ni}({}^{40}\text{Ca},\alpha\text{pn}\gamma)$

B 40 Ca(58 Ni, α pn γ)

 $C = {}^{94}Ag 2p decay$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 ^{#&}	(≥6 ⁺) [#] (2 ⁺)	4.66 s 25 0.53 s <i>3</i> 7	ABC	%ε+%β ⁺ =100 J ^π : ε decay to ⁹² Ru(6 ⁺) is probably allowed and feeding of ⁹² Ru(8 ⁺) is evident; existence of a low-lying J=5 state is not supported by shell-model calculations or Rh g.s. J ^π systematics. However, see comment on J(0+x) level which may, in reality, Be the g.s. T _{1/2} : from time behavior of 163γ, 340γ, 818γ and 919γ in ⁹² Ru following ⁹² Rh ε decay (2004De40). Others: 3.0 s 8 (2001Xu05, 2005Xu04; from 893γ(⁹¹ Tc)(t) following εp decay); 5.6 s 5 (2001Ki13); 5.6 s 3 (2002Ku21; from time-to digital converter spectrum gated by 817γ, 865γ and 990γ); 2.9 s +15-8, preliminary datum from 2000WeZZ for level(s) produced in ¹¹² Sn bombardment of Be. %ε+%β ⁺ =100
				J ^π : possible ε decay branches observed to 0 ⁺ and 2 ⁺ levels in ⁹² Ru; shell-model calculations predict a very low energy 2 ⁺ level which may in fact be the g.s., but no 1 ⁺ state. However, the decay scheme is very tentative and the branch to ⁹² Ru(0 ⁺ g.s.) may be overestimated. T _{1/2} : from two-component fit to time spectrum of 866γ(⁹² Ru) following ε decay from a ⁹² Rh source containing both ⁹² Rh isomers (2004De40).
235 ^{&} 1	(8+)		ABC	
599.1 ^{&} 13	(9 ⁺)		ABC	
1270.9 ^{&} 13	(10^{+})		ABC	
1548.6 ^{&} 14	(11^{+})		ABC	
1845.9? 17	(11-)		A	
2151.7 15	(11)		AB	
2330.0^{-1} 17	(13^{-})		AB	
2007.7 = 17	(12)		AB	
2043.7 = 17 2106.6 & 20	(15)			
3779.7 [@] 20	(15 ⁻)		AB	E(level): the order of the 1034 γ -936 γ cascade is not established, so E=3878, J^{π} =(14 ⁻) is a possible alternative.
4313.6 ^{&} 23	(17 ⁺)		AB	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹²Rh Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
4813.7 [@] 22	(16 ⁻)	AB	
5418.6 ^{&} 25	(19 ⁺)	AB	
5752.7 [@] 25	(18 ⁻)	AB	
6029 ^{&} 3	(20^{+})	AB	
6305 ^{&} 3	(21^{+})	AB	
6385 [@] 3	(19 ⁻)	AB	E(level): the order of the 1420 γ -632 γ cascade is not established, so E=7173, J^{π} =(20 ⁻) is a possible alternative.
6691 [@] 3	(20 ⁻)	В	E(level): the order of the 1114 γ -306 γ cascade is not established, so E=7499 is also possible. Alternatively, E=6059 or 6867 and J^{π} =(20 ⁻) if order of 1419 γ and 632 γ is reversed.
7805 [@] 3	(21 ⁻)	AB	
9744 [@] 3	(23 ⁻)	В	

[†] From least-squares fit to $E\gamma$, allowing 1 keV uncertainty in all $E\gamma$ data.

[‡] Tentative values suggested in (${}^{40}Ca, \alpha pn\gamma$), based on measured transition anisotropy ratios and comparison of E(level) with energies predicted by shell-model calculations in the ($p_{1/2}$, $g_{9/2}$) model space (1997Ka07), except as noted.

[#] Shell-model calculations predict a 6⁺ level $\approx 200 \text{ keV}$ below an 8⁺ level (unlike ⁹⁰Nb, ⁹²Tc, and isotones ⁸⁸Nb, ⁹⁰Tc, where the 6⁺ is 100-200 keV above the 8⁺ and, for ⁹⁰Nb, isomeric). The strongest transition (237 γ) observed in (⁴⁰Ca, α pn γ) is preceded by a 1036 γ whose energy is comparable to 890 and 1141 for the yrast 10⁺ to 8⁺ transitions in ⁹⁰Tc and ⁹²Tc, respectively. Shell-model calculations also predict 2⁺ and 4⁺ states ≈ 50 keV below and above the 6⁺ level, respectively; consequently, the observed 6⁺ level might not in fact be the g.s., but in the absence of experimental evidence to the contrary, the evaluator assigns it as the g.s. here and associates the longer of the measured ⁹²Rh halflives with it.

[@] Band(A): π =-, yrast sequence.

& Band(B): π =+, yrast sequence. Agreement with shell model predictions (1997Ka07) is very good.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ#	Comments
235 599.1 1270.9	(8^+) (9 ⁺) (10 ⁺)	235 364 672	$ \begin{array}{c} 100 \\ 100 \\ 40.9^{@} 21 \end{array} $	0.0 235 599.1	$(\geq 6^+)$ (8 ⁺) (9 ⁺)	D+Q D+Q	-0.05 <i>3</i> -0.20 <i>6</i>	
1548.6	(11+)	1036 278 949	$100^{@} 16$ $79^{@} 8$ $100^{@} 6$	235 1270.9 599.1	(8 ⁺) (10 ⁺) (9 ⁺)	Q# D(+Q) [#] Q	+0.01 5	
1845.9? 2151.7	(11 ⁻)	575 ^{&} 307 ^{&}	100	1270.9 1845.9?	(10^+)			Reported in $({}^{40}Ca,\alpha pn\gamma)$ only. Reported in $({}^{40}Ca,\alpha pn\gamma)$ only.
2536.6	(13 ⁺)	881 988	100 [@] 10 100	1348.0 1270.9 1548.6	(11^{+}) (10^{+}) (11^{+})	D(+Q) [#] Q	-0.02 4	
2607.7 2843.7	(12 ⁻) (13 ⁻)	456 236	$100 \\ 90^{@} 4 \\ 100^{@} 7$	2151.7 2607.7 2151.7	(11^{-}) (12^{-}) (11^{-})	$D(+Q)^{#}$ D+Q [#]	$-0.05\ 5$ $-0.07\ 3$	
3196.6 3779.7 4313.6 4813.7 5418.6	(15 ⁺) (15 ⁻) (17 ⁺) (16 ⁻) (19 ⁺)	692 660 936 1117 1034 1105	100 100 100 100 100 100	2131.7 2536.6 2843.7 3196.6 3779.7 4313.6	(11^{-}) (13^{+}) (13^{-}) (15^{+}) (15^{-}) (17^{+})	Q Q Q D+Q Q	+0.27 5	

$\gamma(^{92}\text{Rh})$

Adopted Levels, Gammas (continued)

					$\gamma(^{92}\text{Rh})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	$\mathbf{E}_f = \mathbf{J}_j^r$	f_{f} Mult. [‡]	$\delta^{\#}$	Comments
5752.7	(18-)	939	100	4813.7 (16	(-) Q [#]		
6029	(20^{+})	610	100	5418.6 (19	$^{+}) D + Q^{\#}$	-0.05 3	
6305	(21^{+})	276	100	6029 (20	$(+Q)^{+}$ D(+Q) [#]	-0.04 6	
6385	(19 ⁻)	632	100	5752.7 (18	⁽⁻⁾ D+Q [#]	+0.25 4	E_{γ} : from ⁴⁰ Ca(⁵⁸ Ni, α pn γ).
6691	(20 ⁻)	306	100	6385 (19) D+Q [#]	+0.11 5	E_{γ} : from ⁴⁰ Ca(⁵⁸ Ni, α pn γ).
7805	(21 ⁻)	1114	66.7 [@] 17	6691 (20) D+Q [#]	-0.14 9	E_{γ} : from ⁴⁰ Ca(⁵⁸ Ni, α pn γ).
		1420	$100^{@} 8$	6385 (19) Q		E_{γ} : from ⁴⁰ Ca(⁵⁸ Ni, α pn γ).
9744	(23 ⁻)	1939	100	7805 (21	–) Q [#]		

[†] From (⁴⁰Ca,αpnγ), except as noted; uncertainty unstated by authors. Agreement with data from (⁵⁸Ni,αpnγ) is excellent.
[‡] Based on γ anisotropy ratio in (⁴⁰Ca,αpnγ), except as noted.
[#] From γ asymmetry in ⁴⁰Ca(⁵⁸Ni,αpnγ).
[@] From ⁴⁰Ca(⁵⁸Ni,αpnγ).
[&] Placement of transition in the level scheme is uncertain.

 $^{92}_{45}Rh_{47}$

Adopted Levels, Gammas

 $^{92}_{45} Rh_{47}$