⁹⁴Ag 2p decay 2006Mu03

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012				

Parent: ⁹⁴Ag: E=6.4×10³ 5; J^{π} =(21⁺); $T_{1/2}$ =0.39 s 4; Q(2p)=3.99×10³ SY; %2p decay=5×10¹ 3

⁹⁴Ag-Q from 2011AuZZ; uncertainty is 640 keV. 2008Ka30 estimated 4910 360.

- ⁹⁴Ag-E: Poorly established. E=6.4 MeV 5 from E(p)=790 20 to ⁹³Pd(4996), E(p)=1010 30 to ⁹³Pd(4753) and S(p)(⁹⁴Ag)=570 500 (2011AuZZ; systematics). 2008Ka30 measured mass excesses for ⁹²Rh and ⁹⁴Pd and deduced Q+ for ⁹⁴Ag(g.s.) ε decay based on extrapolation of Coulomb displacement energies for nearby N=Z nuclides; combining the implied ⁹⁴Ag S(2p)=4910 360 with 2006Mu03's observed E(2p)=1900 100 to ⁹²Rh(1549 level), they deduce E(⁹⁴Ag isomer)=8360 370 (At variance with 6960 400 which they obtained from their mass data and single-proton decay E(p) to ⁹³Pd). see 2007Pe14, 2008Ka30, 2008Ka19, 2011Fa10 for further discussion of this issue. 2008Ka30's estimated S(2p)=4910 360 is compatible with S(2p)(⁹⁴Ag)=3990 640 from systematics proposed In 2011AuZZ. a mass measurement for the g.s. of ⁹³Pd or ⁹⁴Ag could Be especially beneficial (2011Fa10). Others: 2006Ro08, 2007Pe14, 2007Ro16, 2008Ka30, 2008Mu20, 2009Ce04, 2009Je05, 2011Fa10.
- 2006Mu03: ⁹⁴Ag source produced in ⁵⁸Ni(⁴⁰Ca,p3n) reaction and subsequently ionized in the FEBIAD-E or FEBIAD-B2C ion source; reaction products mass-separated; detector array of three large-area Si multistrip detectors and 17 Ge crystals (total photopeak efficiency 3.2% at 1.33 MeV); measured E γ , E(2p), p-p correlations, p-p- γ - γ coin. See also 2005Mu30, 2006Ro08, 2007Ro16, 2008Mu20.
- 2009Ce04: ⁹⁴Ag source produced from bombardment of natural Ni target by a 197-MeV ⁴⁰Ca beam; reaction products recoil In He plus ethylene glycol, are deposited within 0.20 s 5 on slowly rotating catcher wheel to remove long-lived β emitters, and collection spot viewed in low background area by an array of 24 Δ E1(gas)- Δ E2(gas)-E(Si) detector telescopes which can identify protons with E>400 keV; measured E(p), P-P coin. search for 2p decay unsuccessful, but one of the two known single-proton decay groups from ⁹⁴Ag(21⁺) to ⁹³Pd was confirmed.
- Although correlated protons with a summed energy of 1900 *100* appear to deexcite the 94 Ag(21⁺) isomer and appear In coincidence with 5 γ -rays known In 92 Rh, these observations have generated considerable discussion and it would seem highly desirable to obtain independent confirmation of this decay to clear up remaining questions. So far, one confirmation attempt has been unsuccessful (2009Ce04). IT is disconcerting that E(94 Ag isomer) estimates (2008Ka30) differ depending on whether its one-proton or its two-proton decay data are used. shell-model calculations (2008Ka19) for 94 Ag can explain a 21⁺ isomer As due to an inversion of 19⁺ and 21⁺ states resulting from core excitations across the N=Z=50 shell gap, but do not support the large prolate deformation picture of the isomer proposed by 2006Mu03. Also, the sensitivity of the proton detector to other charged particles (e.g., electrons) might create data interpretation difficulties (2009Je05). A mass measurement for the g.s. of 93 Pd or 94 Ag would be especially useful (2011Fa10).

⁹²Rh Levels

E(level) [†]	$J^{\pi \ddagger}$
0	(6 ⁺)
235	(8^{+})
599	(9^{+})
1271	(10^{+})
1549 [#]	(11^{+})

[†] From $E\gamma$.

[‡] From Adopted Levels.

[#] In Adopted Levels, a stronger 949 γ deexcites the same level As the 278 γ , but No 949 γ is evident In the γ spectrum from 2006Mu03.

⁹⁴Ag 2p decay 2006Mu03 (continued)

$\gamma(^{92}\text{Rh})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
235	235	(8+)	0	(6+)	
278	1549	(11^{+})	1271	(10^{+})	
307					In Adopted Levels, Gammas a 306γ deexcites a (20^{-}) 6691 level. unless the adopted 306γ is misplaced, it presumably differs from the 307γ reported by 2006Mu03 because the adopted cascade gammas that immediately follow the 306γ were not observed by 2006Mu03.
364	599	(9 ⁺)	235	(8^{+})	
565‡					
672 833 [‡]	1271	(10+)	599	(9+)	
036	1271	(10^{+})	235	(8^{+})	

From γ spectrum in fig. 1d of 2006Mu03; uncertainties unstated by 2006Mu03.

[‡] Absent In (58 Ni, α pn γ) study by 2007Pe14. see 2007Pe14 for discussion of three possible scenarios for placing the 565 γ and 833 γ , none of which is considered by those authors to be satisfactory. These γ -rays are clearly visible In the p- γ (⁹²Rh) coincidence spectrum In fig. 1d of 2006Mu03, but known ⁹⁴Pd and ⁹³Rh γ -rays are also present In that spectrum; it seems desirable to obtain confirmation that these are indeed ⁹²Rh transitions.

 $x \gamma$ ray not placed in level scheme.

Delayed Protons (92Rh)

E(p)	E(⁹² Rh)	Comments
1.9×10 ³ 1		E(p): summed energy of correlated protons emitted (2006Mu03).

⁹⁴Ag 2p decay 2006Mu03

Decay Scheme

 $^{92}_{45} Rh_{47}$