58 Ni(40 Ca, α pn γ) 1997Ka07

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

Other: 1999Zh04.

1999Zh04: $E({}^{40}Ca)=150$ MeV; 90% enriched ⁵⁸Ni target; four HPGe detectors; measured $E\gamma$ (four transitions observed).

1997Ka07: E=180 MeV; thick 99.8% ⁵⁸Ni target; NORDBALL array (15 Compton-suppressed Ge detectors at θ =79°, 101° and 143°), 11 forward-angle neutron detectors, 20-detector Si ball for α detection; measured E γ , I γ (unstated), $\gamma\gamma$ coin, anisotropy

ratio defined as $2I\gamma(143^{\circ})/[I\gamma(101^{\circ})+I\gamma(79^{\circ})]$; shell-model calculations.

The level scheme from 1997Ka07 is shown here for completeness. However, it differs from the adopted level scheme In several respects: the 632γ is placed to feed the $(13/2^-)$ 2844 level from a second (13^-) level instead of making it part of the 1419γ - 1034γ - 939γ - 936γ cascade, and the order of the 939γ - 1034γ cascade is reversed here.

92Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 ^{#&}	$(6^+)^{\#}$	
235 <mark>&</mark> 1	(8 ⁺)	
599.1 <mark>&</mark> 13	(9+)	
1270.9 ^{&} 13	(10 ⁺)	
1548.6 ^{&} 14	(11^{+})	
1845.9? 17		
2151.7 [@] 15	(11^{-})	
2536.6 ^{&} 17	(13 ⁺)	
2607.7 [@] 17	(12 ⁻)	
2843.7 [@] 17	(13 ⁻)	
3196.6 <mark>&</mark> 20	(15 ⁺)	
3475.7 20	(13 ⁻)	level not adopted; adopted 632γ placement differs.
3779.7 [@] 20	(15 ⁻)	
4313.6 23	(17^{+})	
4718.7 [@] 22	(17 ⁻)	E=4814 and J undetermined if order of 939γ -1034 γ cascade is reversed. adopted J^{π} =(16 ⁻).
5418.6 ^{&} 25	(19 ⁺)	
5752.7 [@] 25	(19 ⁻)	J^{π} : adopted value is (18 ⁻).
6029 3		
6305 3		
7172 ^w 3	(21^{-})	adopted $J^{\pi} = (19^{-})$ and E=6385 or 7172 depending on order of 1419γ -632 γ cascade.

[†] From least-squares fit to $E\gamma$, allowing $\Delta E_{\gamma}=1$ keV for all transitions.

[‡] Tentative values suggested by 1997Ka07, based on measured transition anisotropy ratios and comparison of E(level) with energies predicted by shell-model calculations in the $(p_{1/2}, g_{9/2})$ model space.

[#] Shell-model calculations predict a 6⁺ level \approx 200 keV below an 8⁺ level (unlike several neighboring nuclides, where the 6⁺ lies 100-200 keV above the 8⁺). The strongest transition (237 γ) observed in (⁴⁰Ca, α pn γ) is preceded by a 1036 γ which fits the energy systematics for yrast 10⁺ to 8⁺ transitions in neighboring nuclides.

[@] Band(A): π =-, yrast states.

[&] Band(B): π =+, yrast states.

⁵⁸Ni(⁴⁰Ca, α pn γ) 1997Ka07 (continued)

$\gamma(^{92}\text{Rh})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
235 236 276 278	235 2843.7 6305 1548.6	(8^+) (13 ⁻) (11 ⁺)	0.0 2607.7 6029 1270.9	(6^+) (12 ⁻) (10 ⁺)		Mult.: γ anisotropy ratio=1.05 3 for $235\gamma+236\gamma$ doublet. Mult.: γ anisotropy ratio=1.05 3 for $235\gamma+236\gamma$ doublet. Mult.: γ anisotropy ratio=0.78 4 for $278\gamma+276\gamma$ doublet. Mult.: γ anisotropy ratio=0.78 4 for $278\gamma+276\gamma$ doublet.
307 [#] 364 456	2151.7 599.1 2607 7	(11^{-}) (11^{-}) (9^{+}) (12^{-})	1270.9 1845.9? 235 2151.7	(10^{-}) (8^{+}) (11^{-})	D D	Mult.: γ anisotropy ratio=0.78 2. Mult.: γ anisotropy ratio=0.62 3
575 [#] 603 610	1845.9? 2151.7 6029	(12)	1270.9 1548.6 5418.6	(10^+) (11^+) (19^+)	D	
632	3475.7	(13 ⁻)	2843.7	(13-)		Mult.: γ anisotropy ratio=1.56 <i>12</i> ; interpreted as D, $\Delta J=0$ by 1997Ka07, but also consistent with Q, $\Delta J=2$.
660 672	3196.6 1270.9	(15 ⁺) (10 ⁺)	2536.6 599.1	(13 ⁺) (9 ⁺)	Q D+Q	Mult.: γ anisotropy ratio=1.53 7. Mult.: γ anisotropy ratio=0.40 5.
692 881	2843.7 2151.7	(13 ⁻) (11 ⁻)	2151.7 1270.9	(11 ⁻) (10 ⁺)	Q D	Mult.: γ anisotropy ratio=1.66 <i>12</i> . Mult.: γ anisotropy ratio=0.74 <i>4</i> .
936 939	3779.7 4718.7	(15^{-}) (17^{-})	2843.7 3779.7	(13^{-}) (15^{-})	Q Q	Mult.: γ anisotropy ratio=1.55 8. Mult.: γ anisotropy ratio=1.78 11.
949 988 1034	1548.6 2536.6 5752 7	(11^{+}) (13^{+}) (10^{-})	599.1 1548.6 4718 7	(9^{+}) (11^{+}) (17^{-})	Q Q	Mult.: γ anisotropy ratio=1.77 9. Mult.: γ anisotropy ratio=1.81 9. Mult.: α anisotropy ratio=1.40 6 for 1034 α = 1036 α doublet
1034 1036 1105	1270.9 5418.6	(19^{+}) (10^{+}) (19^{+})	235 4313.6	(17) (8^+) (17^+)	0	Mult.: γ anisotropy ratio=1.49 6 for $1034\gamma+1036\gamma$ doublet. Mult.: γ anisotropy ratio=1.49 6 for $1034\gamma+1036\gamma$ doublet. Mult.: γ anisotropy ratio=1.62 14.
1117 1419	4313.6 7172	(17^+) (21^-)	3196.6 5752.7	(15 ⁺) (19 ⁻)	Q Q	Mult.: γ anisotropy ratio=1.35 7. Mult.: γ anisotropy ratio=1.88 24.

 † Uncertainty unstated by authors.

^{\ddagger} Based on γ anisotropy ratio (as read by the evaluator from plot of measured γ anisotropy versus E γ in fig. 1 of 1997Ka07) and given in comments on the relevant gammas; expected values are \approx 1.7 for Δ J=0 or 2 transitions, <1 for Δ J=1 transitions. [#] Placement of transition in the level scheme is uncertain.

 $^{92}_{45} Rh_{47}$

 $^{92}_{45}\text{Rh}_{47}$