⁴⁰Ca(⁵⁸Ni,αpnγ) 2007Pe14

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012							

 $E(^{58}Ni)=240$ MeV from ATLAS accelerator; ⁴⁰Ca target sandwiched between Au layers to reduce oxidation; GAMMASPHERE array (76 Ge detectors and Neutron Shell of 30 liquid scintillators); Microball array (95 CsI(Tl) detectors) for charged-particle detection; fragment mass analyzer; measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$.

No evidence was found for high-spin states in ⁹²Rh populated by the two-proton decay mode of a 6.7 MeV, (21⁺) isomer of ⁹⁴Ag. Several scenarios (three possible level schemes shown in figure 4 of 2007Pe14) have been considered by 2007Pe14 but none gives a satisfactory possibility. While 2007Pe14 do not rule out such a decay mode, they place a limit of spin difference of ΔJ >10 between the initial level (⁹⁴Ag(21⁺) isomer) and the final level (in ⁹²Rh).

92Rh Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 [@]	6+	
235.0 [@] 10	8+	
599.8 [@] 13	9+	
1271.2 [@] 13	10^{+}	
1549.1 [@] 14	11^{+}	
2152.2 [#] 15	11(-)	
2537.1 [@] 17	13+	
2608.2 17	12(-)	
2844.2# 17	13(-)	
3197.1 ^[®] 20	15+	
3780.2" 20	15(-)	E(level): the order of the 1034 γ -936 γ cascade is not established, so E=3878, J ^{<i>n</i>} =14 ⁽⁻⁾ is a possible alternative.
4314.1 [@] 23	17^{+}	
4814.2 [#] 22	$16^{(-)}$	
5420.1 [@] 25	19+	
5753.2 [#] 25	$18^{(-)}$	
6030 [@] 3	$20^{(+)}$	
6305 [@] 3	$21^{(+)}$	
6385 [#] 3	19 ⁽⁻⁾	E(level): the order of the 1420 γ -632 γ cascade is not established, so E=7173, J ^{π} =(20 ⁻) would be a possible alternative.
6691 <i>3</i>	20 ⁽⁻⁾	E(level): the order of the 1114 γ -306 γ cascade is not established, so E=7499 is also possible. alternatively, E=6059 or 6867 and J ^{\pi} =(20 ⁻) if order of 1420 γ and 632 γ is reversed.
7805 [#] 3	21 ⁽⁻⁾	
9744 [#] 3	23(-)	

[†] From least-squares fit to E γ , allowing 1 keV uncertainty in all E γ data.

^{\ddagger} Authors' suggested values. In Adopted Levels, all J^{π} values are considered to be tentative.

[#] Band(A): π =- yrast sequence.

[@] Band(B): π =+ yrast sequence.

⁴⁰Ca(⁵⁸Ni,αpnγ) **2007Pe14** (continued)

$\gamma(^{92}\text{Rh})$

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	Comments
235		235.0	8+	0.0	6+			E_{γ} , I_{γ} : transition not studied in this work due to expected long half-life (\approx 34 ns) of 235 level based on Weisskopf estimates.
236	18.0 7	2844.2	$13^{(-)}$	2608.2	$12^{(-)}$	D+Q	-0.07 3	$R(90^{\circ}/0^{\circ})=0.605.$
275	12.0 6	6305	21 ⁽⁺⁾	6030	20 ⁽⁺⁾	D(+Q)	-0.04 6	Mult.: $\Delta J=1$; E1 is also possible. R(90°/0°)=0.60 8.
278	30 <i>3</i>	1549.1	11^{+}	1271.2	10^{+}	D(+Q)	+0.01 5	$R(90^{\circ}/0^{\circ})=0.68 \ 8.$
306 [‡]	10.0 8	6691	$20^{(-)}$	6385	19(-)	D+Q	+0.11 5	$R(90^{\circ}/0^{\circ})=0.92 8.$
365	56 7	599.8	9+	235.0	8+	D+Q	-0.05 3	$R(90^{\circ}/0^{\circ})=0.57$ 5.
456	24.0 23	2608.2	$12^{(-)}$	2152.2	$11^{(-)}$	D(+Q)	-0.05 5	$R(90^{\circ}/0^{\circ})=0.63$ 7.
603	16.0 14	2152.2	11(-)	1549.1	11^{+}			
610	16.0 12	6030	$20^{(+)}$	5420.1	19+	D+Q	-0.05 3	$R(90^{\circ}/0^{\circ})=0.57$ 4.
632 [‡]	20.0 13	6385	$19^{(-)}$	5753.2	$18^{(-)}$	D+Q	+0.25 4	$R(90^{\circ}/0^{\circ})=1.33$ 13.
660	32.0 21	3197.1	15+	2537.1	13+	Q		$R(90^{\circ}/0^{\circ})=1.94.$
672	18.0 9	1271.2	10^+	599.8	9 ⁺	D+Q	-0.20 6	$R(90^{\circ}/0^{\circ})=0.39$ 6.
692	20.0 13	2844.2	$13^{(-)}$	2152.2	11(-)	(Q)		$R(90^{\circ}/0^{\circ})=1.70\ 25.$
881	30 3	2152.2	11(-)	12/1.2	10+	D(+Q)	-0.02 4	$R(90^{\circ}/0^{\circ})=0.68$ 7.
936 4	36 <i>3</i>	3780.2	15(-)	2844.2	13(-)	Q		$R(90^{\circ}/0^{\circ})=1.83\ 24.$
939	26 4	5753.2	18(-)	4814.2	16(-)	Q		$R(90^{\circ}/0^{\circ})=1.84\ 26.$
949	38.0 21	1549.1	11+	599.8	9 ⁺	Q		$R(90^{\circ}/0^{\circ})=2.1$ 3.
988	40.0 23	2537.1	13	1549.1	11'	Q		$R(90^{\circ}/0^{\circ})=2.34.$
1034+	34 3	4814.2	$16^{(-)}$	3780.2	$15^{(-)}$	D+Q	+0.27 5	$R(90^{\circ}/0^{\circ}) = 1.43\ 20.$
1036	44 /	12/1.2	10	235.0	8' 17+	Q		$R(90^{\circ}/0^{\circ})=2.14.$
1100	20.0 0	5420.1	19	4314.1	1/	Q	0.14.0	R(90/0) = 2.10.
1114*	8.0 2	7805	21(-)	6691	20 ⁽⁻⁾	D+Q	-0.14 9	$R(90^{\circ}/0^{\circ})=0.50\ 10.$
111/	20.0 21	4314.1	1/.	5197.1	10(-)	Q Q		K(90/0) = 2.4/.
1420+	12.0 9	7805	$21^{(-)}$	6385	$19^{(-)}$	Q		$R(90^{\circ}/0^{\circ})=1.7021.$
1939	5.0 6	9744	23(-)	/805	21(-)	Q		$R(90^{\circ}/0^{\circ})=1.9$ 4.

[†] Based on fit to measured $\gamma(\theta)$ In which initial and final spins, mixing ratio and alignment (σ/J) were optimized. values of γ asymmetry (I(90°)/I(0°)) resulting from the fitted curves are given In comments; this ratio exceeds 1.5 for all transitions assigned to $\Delta J=2$ placements and ranges from 0.4 to 1.4 for the $\Delta J=1$ placements.

[±] The order of the following cascades is not established: $1420\gamma-632\gamma$; $1034\gamma-936\gamma$ and $1114\gamma-306\gamma$.

 $^{92}_{45}\text{Rh}_{47}$

 $\frac{{}^{40}\text{Ca}({}^{58}\text{Ni}, \alpha \text{pn}\gamma)}{2007\text{Pe14}}$

 $^{92}_{45}\text{Rh}_{47}$