92 Kr β^- decay 1972O103,1973C102

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012

Parent: 92 Kr: E=0.0; J^{π}=0⁺; T_{1/2}=1.840 s 8; Q(β^{-})=6003 7; % β^{-} decay=100.0 Others: 1970Lu05, 1972Mc04, 1973HaZK, 1974ClZX, 1978St02, 1982Al01, 1988GrZX, 1989Gr03, 1992GrZX, 1992Gr06.

⁹²Rb Levels

The adopted decay scheme is essentially that obtained by 1972Ol03 based upon γ -ray singles and coincidence measurements, but renormalized in accord with $\%\beta(g.s.)$ estimate from 1973Cl02.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0.0	0-	4.48 [‡] s <i>3</i>	868.35 9	(1,2 ⁻)	2611.06 12	(1^+)
142.308 6	1-	0.75 [#] ns <i>3</i>	920.87 9	$(1,2^{-})$	2718.81 16	$(1,2^{-})$
316.73 7	$(1,2^{-})$		928.04 9	$(1,2^{-})$	2901.50 14	(1^+)
333.40 7	$(1,2^{-})$		1360.91 5	1+	3057.29 22	$(1,2^{-})$
484.60 6	$(1,2^{-})$		1663.55 17	$(1,2^{-})$	3149.48 19	(1^+)
492.58 7	$(1,2^{-})$		2038.99 7	(1^{+})	3338.5? 4	
548.31 6	$(1,2^{-})$		2079.44 24	$(1,2^{-})$	3341.89 17	1+
623.60 8	$(1,2^{-})$		2321.02 20		3659.7? 4	
728.24 13	$(1,2^{-})$		2587.45 20	(1^{+})	4192.99 25	1^{+}

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] From 1972Mc04.

β^{-} radiations

Singles and coincidence β^- spectrum measurements:

1973Cl02: eight gated spectra give an average $Q(\beta^-)$ value of 5970 keV 80, revised to $Q(\beta^-)=6160$ 80 in 1978Wo15.

1978St02: measured four β^- spectra gated by γ rays deexciting the 1361 level to obtain Q(β^-)=5915 *120*.

1988GrZX: Q(β^-)=6000 60, from $\beta\gamma$ coin data.

1989Gr03: measured six β^- spectra gated by γ rays deexciting the 1361 level to obtain Q(β^-)=6045 80.

1992Gr06: measured five β^- spectra gated by γ rays deexciting the 1361 level to obtain Q(β^-)=5993 27.

1992GrZX: measured six β^- spectra gated by γ rays deexciting the 1361 level to obtain Q(β^-)=5987 10 (adopted by 2003Au03).

1982A101: average E β =2670 470 cf. 2000 100 calculated for the decay scheme adopted here using the RADLST code.

E(decay)	E(level)	Iβ ^{−‡&}	Log ft [†]		Comments	
(1810 7)	4192.99	0.29 6	5.03 9	av Eβ=714.0 32		
$(2343^{a}7)$	3659.7?	0.11 3	5.91 12	av E β =960.6 33		
(2661 7)	3341.89	0.60 6	5.41 5	av $E\beta = 1109.8 \ 33$		
$(2665^a 7)$	3338.5?	0.10 6	6.2 3	av E β =1111.4 33		
(2854 7)	3149.48	0.42 5	5.69 6	av $E\beta = 1200.7 \ 34$		
(2946 7)	3057.29	0.36 5	5.82 6	av $E\beta = 1244.4 \ 34$		
(3102 7)	2901.50	0.60 10	5.69 8	av Eβ=1318.4 <i>34</i>		
(3284 7)	2718.81	0.28 8	6.13 13	av $E\beta = 1405.4 \ 34$		
(3392 7)	2611.06	0.92 7	5.67 4	av Eβ=1456.8 <i>34</i>		
(3416 7)	2587.45	0.78 23	5.76 13	av $E\beta = 1468.0 \ 34$		
(3682 7)	2321.02	0.32 4	6.29 6	av $E\beta = 1595.4 \ 34$		

.. .

92 Kr β^- decay	1972Ol03,1973Cl02 (continued)
----------------------------	-------------------------------

				β^{-} radiations (continued)
E(decay)	E(level)	Ιβ ^{-‡&}	$\log ft^{\dagger}$	Comments
(3924 7)	2079.44	0.17 6	6.68 16	av Eβ=1711.2 34
(3964 7)	2038.99	1.8 <i>3</i>	5.68 8	av $E\beta = 1730.6 \ 34$
(4339 7)	1663.55	0.26 6	6.69 10	av $E\beta = 1911.0 \ 34$
4626 [#] 10	1360.91	88 5	4.291 25	av Eβ=2056.7 <i>34</i>
(5075 7)	928.04	0.27 8	6.98 13	av $E\beta = 2265.3 \ 34$
(5275 7)	728.24	0.15 8	7.31 24	av $E\beta = 2361.7 \ 34$
(53797)	623.60	0.43 12	6.89 13	av Eβ=2412.2 <i>34</i>
(5510 7)	492.58	0.6 3	6.79 22	av E β =2475.5 34
(6003 7)	0.0	≈2 [@]	≈6.4	av Eβ=2713.3 <i>34</i>

[†] Calculated assuming g.s. β^- feeding of $\approx 2\%$, as determined from β^- spectrum by 1973Cl02.

[±] From intensity balance at level, assuming a γ intensity of $I_{\gamma}/2 \pm I_{\gamma}/2$ for multiply-placed or tentatively-placed lines.

[#] From Q(β^{-})=5987 10 (1992GrZX, based on $\beta\gamma$ coin spectrum endpoint energies) minus E(1361 level).

^(a) From 1973Cl02, whose singles β^- spectrum agreed much better with a calculated spectrum which assumed 2% g.s. β^- branching than with one which assumed the 50% 15 g.s. branch deduced indirectly by 1972Ol03 (on the basis of authors' estimated relative amounts of 92 Sr, 92 Kr, 92 Br on source collection tape, authors' decay schemes (without allowance for possible internal conversion) and I(1384 γ in 92 Sr)=90% 10). A 50% 15 b- branch to g.s. would imply allowed β^- feeding from the 0⁺ parent and hence J^{π}=1⁺ for the 92 Rb g.s., in contradiction to J(92 Rb)=0 adopted from atomic beam work (note that I β (g.s.) must be <8% if log *ft*(g.s.)≥5.9).

& Absolute intensity per 100 decays.

^{*a*} Existence of this branch is questionable.

 $\gamma(^{92}\text{Rb})$

I γ normalization: from $\Sigma(I(\gamma+ce) \text{ g.s.})=98\% 2$. $\%\beta^-n(^{92}\text{Kr})=0.033$ is negligible; the evaluator assumes I β (g.s.)=2% (as deduced by 1973Cl02) and, for the purpose of normalization, allows a 100% uncertainty in I β (g.s.); I γ =0.44 44 and I γ =0.32 32 were assumed, respectively, for the doubly placed 493 γ and 2039 γ .

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α &	Comments
142.307 6	100 5	142.308	1-	0.0	0-	M1 [#]	0.0555#	α(K)=0.0490 7; α(L)=0.00549 8; α(M)=0.000908 13; α(N+)=0.0001069 15 α(N)=0.0001025 15; α(O)=4.37×10-6 7 %Iγ=64.1 19 assuming proposed Iγ normalization. α(K)exp=0.051 6 (1972Mc04).
159.2 <i>3</i>	0.16 4	492.58	$(1,2^{-})$	333.40	$(1,2^{-})$			
167.9 2	0.20 3	484.60	$(1,2^{-})$	316.73	$(1,2^{-})$			
^x 185.6 2	0.17 3							
191.1 <i>1</i>	1.3 <i>1</i>	333.40	$(1,2^{-})$	142.308	1-			
214.9 <i>1</i>	0.56 5	548.31	$(1,2^{-})$	333.40	$(1,2^{-})$			
282.0 2	0.42 4	2321.02		2038.99	(1^{+})			
316.8 <i>1</i>	9.1 5	316.73	$(1,2^{-})$	0.0	0^{-}			
333.4 5	0.07 3	333.40	$(1,2^{-})$	0.0	0-			
342.3 1	3.30 18	484.60	$(1,2^{-})$	142.308	1-			
350.3 1	0.42 4	492.58	$(1,2^{-})$	142.308	1-			
372.3 <i>3</i>	0.18 5	920.87	$(1,2^{-})$	548.31	$(1,2^{-})$			
394.7 <i>3</i>	0.18 4	728.24	$(1,2^{-})$	333.40	$(1,2^{-})$			
436.2 3	0.33 6	920.87	$(1,2^{-})$	484.60	$(1,2^{-})$			

Continued on next page (footnotes at end of table)

					γ ⁽⁹² Rb) (continued
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ^{‡@}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$
440.0.1	0.94.8	1360.91	1+	920.87	(1.2^{-})
480.9.2	0.28.4	623.60	(12^{-})	142 308	1-
484.6.1	5.00.26	484 60	$(1,2^{-})$	0.0	0-
492.6^{a} 1	0.88^{a} 7	492 58	$(1,2^{-})$	0.0	0-
492.0 1 102.6^{a} 1	0.88^{a} 7	1360.01	(1,2) 1 ⁺	868 35	(1.2^{-})
535.0.1	0.64 6	868 35	(12^{-})	333.40	$(1,2^{-})$
548 3 1	21 8 12	548 31	$(1,2^{-})$	0.0	(1,2)
585 0 2	0.35.6	728 24	$(1,2^{-})$	1/2 308	1-
623 7 1	211	623.60	$(1,2^{-})$	0.0	0-
632.6.3	0.29.7	1360.91	1+	728 24	(1.2^{-})
678.1 1	0.58.5	2038.99	(1^+)	1360.91	1+
^x 683.7.2	0.26.5	2000.000	(1)	1000001	
728.4 4	0.18.5	728.24	(1.2^{-})	0.0	0-
737.4 2	0.80 8	1360.91	1+	623.60	(1.2^{-})
785.7 1	0.70 6	928.04	$(1,2^{-})$	142.308	1-
812.6 <i>1</i>	22.7 12	1360.91	1+	548.31	$(1,2^{-})$
^x 826.0 6	0.20 9				
867.9 8	0.13 8	868.35	$(1,2^{-})$	0.0	0-
876.3 1	6.6 4	1360.91	1^{+}	484.60	$(1,2^{-})$
921.0 2	0.43 6	920.87	$(1,2^{-})$	0.0	0-
928.0 4	0.21 6	928.04	$(1,2^{-})$	0.0	0-
1044.2 <i>1</i>	7.4 <i>4</i>	1360.91	1^{+}	316.73	(1,2 ⁻)
1115.8 <i>3</i>	0.16 3	1663.55	$(1,2^{-})$	548.31	$(1,2^{-})$
1178.9 <i>3</i>	0.16 4	1663.55	$(1,2^{-})$	484.60	$(1,2^{-})$
1218.6 <i>1</i>	93 5	1360.91	1+	142.308	1-
^x 1232.5 6	0.08 4				
*1240.5 2	0.24 4	0(11.0)	(4+)	12(0.01	4
1249.9 3	0.15 3	2611.06	(1')	1360.91	1'
1258.80 4	0.12 3	3338.5?		2079.44	$(1,2^{-})$
x1285.0 5	0.08 3				
1291.6 7	0.14 7	4192.99	1+	2901.50	(1^{+})
1310.7 3	0.18 3	2038.99	(1')	728.24	(1,2)
1345.5 /	0.07 3	1663.55	(1,2)	316.73	(1,2)
1360.8 1	5.4 3	1360.91	1^{\prime}	0.0	$(1, 2^{-})$
1394.2 5	0.08 3	3057.29	(1,2)	1003.55	(1,2)
1415.1 2	0.20.3	2038.99	(1^{+}) 1 ⁺	023.00	(1,2) $(1,2^{-})$
14/4.1 J x1525 8 3	0.13 3	4192.99	1	2/10.01	(1,2)
1520.6 5	$0.13 \ 3$ $0.07 \ 4$	2901 50	(1^{+})	1360.91	1+
1554.4.7	0.60.5	2038.99	(1^+)	484.60	(1.2^{-})
1594.4 6	0.08.3	2030.99	$(1,2^{-})$	484.60	$(1,2^{-})$
1621 1 <mark>b</mark> 8	0.06.3	3650 72	(1,2)	2038.00	(1,2)
1658 7 7	0.00 5	2587.45	(1^{+})	2038.99	(1) (12^{-})
1663 4 4	0.07 3	1663 55	$(1 2^{-})$	0.0	(1,2)
1605.1°	0.00 2	2220 52	(1,2)	1662 55	$(1, 2^{-})$
10/3.1 3	0.09.5	2020.21 2020.44	$(1, 2^{-})$	216 72	(1,2) $(1,2^{-})$
1702.8 4	132	2079.44	(1,2) (1^+)	1/2 308	(1,2)
x1032 0 5	0.09.3	2030.99	(1)	142.500	1
1973 4 3	0.02.4	2901 50	(1^{+})	928.04	(1.2^{-})
1981.0 4	0.13 3	2901.50	(1^+)	920.87	$(1,2^{-})$
1987.4 2	0.38 4	2611.06	(1^+)	623.60	(1.2^{-})
2004.5 6	0.08 3	2321.02	(-)	316.73	$(1,2^{-})$
2039.0 ^a 2	0.63 ^a 6	2038.99	(1^{+})	0.0	0-
2039.0 ^a 2	0.63 ^a 6	2587.45	(1^+)	548.31	(1,2 ⁻)
^x 2075.4 4	0.14 3				

 92 Kr β^- decay 1972O103,1973C102 (continued)

d)

Continued on next page (footnotes at end of table)

				92 Kr β^- de	cay	1972Ol03,1973Cl02 (continued)
					<u> </u>	⁹² Rb) (continued)
E_{γ}^{\dagger}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	
2079.2.4	0.14.3	2079.44	(1.2^{-})	0.0	0-	
$2095.3^{a}.3$	0.20^{a} 4	2587.45	(1,2)	492.58	(1.2^{-}))
2095.3^{a} 3	0.20^{a} 4	2718.81	$(1,2^{-})$	623.60	$(1,2^{-})$)
2128.7.5	0.13 4	3057.29	$(1,2^{-})$	928.04	(1.2^{-}))
2271.0 5	0.08 3	2587.45	(1^{+})	316.73	(1.2^{-}))
2277.3 3	0.18 3	2611.06	(1^+)	333.40	$(1,2^{-})$)
2401.8 6	0.07 3	2718.81	$(1,2^{-})$	316.73	$(1,2^{-})$)
2414.1 9	0.07 4	3341.89	1+	928.04	$(1,2^{-})$)
2417.2 5	0.14 4	2901.50	(1^{+})	484.60	$(1,2^{-})$)
2435.1 6	0.16 3	3057.29	$(1,2^{-})$	623.60	$(1,2^{-})$)
2444.9 <i>3</i>	0.27 4	2587.45	(1^{+})	142.308	1-	
2468.5 <i>3</i>	0.27 5	2611.06	(1^{+})	142.308	1-	
2585.1 7	0.19 9	2901.50	(1^{+})	316.73	$(1,2^{-})$)
2587.5 4	0.38 9	2587.45	(1^{+})	0.0	0^{-}	
2611.4 2	0.46 5	2611.06	(1^{+})	0.0	0^{-}	
^x 2713.2 6	0.09 3					
2718.7 2	0.42 4	2718.81	$(1,2^{-})$	0.0	0^{-}	
2759.0 2	0.33 4	2901.50	(1^{+})	142.308	1-	
2793.3 4	0.15 3	3341.89	1^{+}	548.31	$(1,2^{-})$)
2832.8 2	0.47 5	3149.48	(1^{+})	316.73	$(1,2^{-})$)
2854.5 <mark>b</mark> 7	0.11 4	3338.5?		484.60	$(1,2^{-})$)
3056.9 <i>3</i>	0.20 4	3057.29	$(1,2^{-})$	0.0	0-	
^x 3099.8 5	0.14 4					
3149.0 4	0.19 4	3149.48	(1^{+})	0.0	0^{-}	
3199.5 2	0.68 5	3341.89	1+	142.308	1-	
3272.3 5	0.10 3	4192.99	1^{+}	920.87	$(1,2^{-})$)
3324.4 7	0.07 2	4192.99	1^{+}	868.35	$(1,2^{-})$)
3342.7 <mark>a</mark> 7	0.06 ^a 2	3341.89	1^{+}	0.0	0-	
3342.7 <mark>ab</mark> 7	0.06 ^{<i>a</i>} 2	3659.7?		316.73	$(1,2^{-})$)
3659 6 ^b 5	0.13.3	3659 72		0.0	0-	
x2727.2 0	0.15 5	5057.11		0.0	0	

x3727.3 8 0.06 3

[†] From 1972Ol03, except for 142γ which is from 1979Bo26.

[#] Evaluator adopts $\alpha(K)\exp=0.051$ 6 (1972Mc04) which allows mult=M1(+E2) or E1+M2; the latter mult is excluded by RUL. Other data: $\alpha(K)\exp=0.128$ 6 and K/L=5.6 9 (1973HaZK); these values imply mutually inconsistent mult; also, this $\alpha(K)\exp$ requires significant mixing for this transition to J=0 g.s., which is untenable (pure mult demanded for J to 0 transition).

[@] For absolute intensity per 100 decays, multiply by 0.64 3.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

tinued)

[‡] From 1972Ol03.

92 Kr β^- decay 1972O103,1973C102

Decay Scheme

 $^{92}_{37}\rm{Rb}_{55}$

5

$\frac{92}{\rm Kr}\,\beta^-$ decay 1972Ol03,1973Cl02

Decay Scheme (continued)

⁹²₃₇Rb₅₅

6

$^{92}{\rm Kr}\,\beta^-$ decay 1972Ol03,1973Cl02

7

92 Kr β^{-} decay 1972Ol03,1973Cl02

Decay Scheme (continued)

