²⁵²Cf SF decay 2009Hw03,1974ClZX

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

Parent: ²⁵²Cf: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.645$ y 8; %SF decay=3.092 8 ²⁵²Cf-%SF decay: %SF(²⁵²Cf)=3.092 8 (from ENSDF database for ²⁵²Cf).

2009Hw03: 252 Cf source (α -decay intensity of 62 μ Ci) placed between two 13-micron thick Fe foils inside a 7.62 cm

polyethylene ball; Gammasphere array (101 Compton-suppressed Ge detectors); measured E γ , I γ , $\gamma\gamma\gamma$ coin, (Pm x ray)- γ - γ coin, Pm-Rb cross coincidences.

1974CIZX: ²⁵²Cf source (2x10⁵ fissions/sec) placed between cooled Si-Au surface barrier detectors; planar Si(Li) detector (FWHM=0.56 At 26 keV) for E_{γ} =10-100; prompt x-ray shield; planar Ge(Li) detector (FWHM=2.9 At 1332 keV); coax Ge(Li) detector (FWHM=3.8 At 1332); measured Ey, fragment-fragment-y(In Si(Li) and/or Ge(Li) detectors) delayed coincidences, γ -K x ray coin; $\gamma\gamma$ coin, isomer T_{1/2}.

The level scheme is based on the coincidence data from 2009Hw03.

⁹²Rb Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	0^{-}		
142.5 <i>3</i>	1-	0.75 ns 3	$T_{1/2}$: from Adopted Levels.
284.9 5	3-	≈57 ns	$T_{1/2}$: 1974ClZX report a $T_{1/2}$ =57 ns 142γ from ⁹² Rb which is strongly coincident with itself and with K x ray(Rb); this implies the existence of an isomeric level in ⁹² Rb with E≥284 keV which is not populated in ⁹² Kr β ⁻ decay (1974ClZX).
431.6 5			
1388.6 <i>6</i>			
1648.2 5			
1683.1 6			
1959.4 7			
2693.9 7			
2980.8 8			
3700.5 8			
4789.9 9			

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

$\gamma(^{92}\text{Rb})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α #	Comments
(34.9)		1683.1		1648.2				E_{γ} : from level energy difference. existence of transition was indirectly confirmed in a coincidence spectrum double-gated on the 286.9 γ and 734.5 γ (authors report a 33 keV low-energy cutoff for their experiment).
142.4 3	70 4	284.9	3-	142.5	1-	E2	0.264 5	 E_γ: 142.4-keV transition observed in coincidence spectra double-gated on the previously known 142.5-keV transition and another transition in ⁹²Rb. I_γ: I(142.4γ)/I(142.5γ)=0.70 assumed by 2009Hw03. Mult : from Adopted Gammas.
142.5 3	100 5	142.5	1-	0.0	0-	M1	0.0553	$\alpha(K)=0.0488 \ 8; \ \alpha(L)=0.00547 \ 9; \ \alpha(M)=0.000904 \ 14; \ \alpha(N+)=0.0001065 \ 17 \ \alpha(N)=0.0001022 \ 16; \ \alpha(O)=4.35\times10^{-6} \ 7 \ Mult.; from Adopted Gammas.$
146.7 <i>3</i> 276.3 <i>3</i>	39 <i>2</i> 20 <i>1</i>	431.6 1959.4		284.9 1683.1	3-			

Continued on next page (footnotes at end of table)

²⁵²Cf SF decay 2009Hw03,1974ClZX (continued)

$\gamma(^{92}\text{Rb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{E}_{f}	E_{γ}^{\dagger}	I_{γ}	E _i (level)	E_f	\mathbf{J}_f^{π}
286.9 3	71	2980.8	2693.9	1089.4 3	11	4789.9	3700.5	
294.5 3	51	1683.1	1388.6	1216.6 <i>3</i>	41	1648.2	431.6	
719.7 3	51	3700.5	2980.8	1251.5 <i>3</i>	51	1683.1	431.6	
734.5 3	16 2	2693.9	1959.4	1363.3 <i>3</i>	22 1	1648.2	284.9	3-
957.0 <i>3</i>	61	1388.6	431.6					

[†] From 2009Hw03. Uncertainty of 0.3 keV assigned as per e-mail reply to XUNDL database compilers from the first author on Sept 21, 2009. The statistical uncertainty according to that e-mail reply is 0.1 keV.

[‡] From 2009Hw03. Uncertainty of 5% for I γ >20, 15% for I γ =2-20 and 30% for I γ <2 assigned by evaluator based on statement in e-mail reply of Sept. 21, 2009 from the first author that the statistical uncertainty is 1% but the total uncertainty (including systematic) is 5% for strong lines and up to 30% for very weak ones. In the assignment of the uncertainty, the number of significant digits has been kept the same as in the partial level scheme in figure 5 of 2009Hw03.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{92}_{37}\text{Rb}_{55}\text{-}3$

⁹²₃₇Rb₅₅