$\underline{{ }^{252} \text { Cf SF decay } \quad \mathbf{2 0 0 9 H w 0 3 , 1 9 7 4 C l Z X ~}}$

$\frac{\text { Type }}{} \quad \frac{\text { Author }}{\text { Full Evaluation }} \quad$| History |
| :---: |

Parent: ${ }^{252}$ Cf: $\mathrm{E}=0.0 ; \mathrm{J}^{\pi}=0^{+} ; \mathrm{T}_{1 / 2}=2.645$ y $8 ; \% \mathrm{SF}$ decay $=3.0928$
${ }^{252} \mathrm{Cf}-\% \mathrm{SF}$ decay: $\% \mathrm{SF}\left({ }^{(52} \mathrm{Cf}\right)=3.0928$ (from ENSDF database for ${ }^{252} \mathrm{Cf}$).
$2009 \mathrm{Hw} 03:{ }^{252} \mathrm{Cf}$ source (α-decay intensity of $62 \mu \mathrm{Ci}$) placed between two 13 -micron thick Fe foils inside a 7.62 cm
polyethylene ball; Gammasphere array (101 Compton-suppressed Ge detectors); measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma \gamma \gamma$ coin, (Pm x ray) $\gamma-\gamma$ coin, $\mathrm{Pm}-\mathrm{Rb}$ cross coincidences.
1974ClZX: ${ }^{252} \mathrm{Cf}$ source (2×10^{5} fissions/sec) placed between cooled $\mathrm{Si}-\mathrm{Au}$ surface barrier detectors; planar $\mathrm{Si}(\mathrm{Li})$ detector
($\mathrm{FWHM}=0.56$ At 26 keV) for $\mathrm{E} \gamma=10-100$; prompt x-ray shield; planar $\mathrm{Ge}(\mathrm{Li})$ detector ($\mathrm{FWHM}=2.9$ At 1332 keV); coax $\mathrm{Ge}(\mathrm{Li})$ detector ($\mathrm{FWHM}=3.8$ At 1332); measured $\mathrm{E} \gamma$, fragment-fragment- $\gamma(\mathrm{In} \mathrm{Si}(\mathrm{Li})$ and/or $\mathrm{Ge}(\mathrm{Li})$ detectors) delayed coincidences, $\gamma-\mathrm{K} \times$ ray coin; $\gamma \gamma$ coin, isomer $\mathrm{T}_{1 / 2}$.
The level scheme is based on the coincidence data from 2009 Hw 03 .
${ }^{92} \mathrm{Rb}$ Levels

$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$	$\mathrm{J}^{\text {a }}$	$\mathrm{T}_{1 / 2}$	Comments
0.0	0^{-}		
142.53	1^{-}	0.75 ns 3	$\mathrm{T}_{1 / 2}$: from Adopted Levels.
284.95	3^{-}	$\approx 57 \mathrm{~ns}$	$\mathrm{T}_{1 / 2}: 1974 \mathrm{ClZX}$ report a $\mathrm{T}_{1 / 2}=57 \mathrm{~ns} 142 \gamma$ from ${ }^{92} \mathrm{Rb}$ which is strongly coincident with itself and with $\mathrm{K} x \operatorname{ray}(\mathrm{Rb})$; this implies the existence of an isomeric level in ${ }^{92} \mathrm{Rb}$ with $\mathrm{E} \geq 284$ keV which is not populated in ${ }^{92} \mathrm{Kr} \beta^{-}$decay (1974ClZX).
431.65			
1388.66			
1648.25			
1683.16			
1959.47			
2693.97			
2980.88			
3700.58			
4789.99			
\dagger From \ddagger From	dopt	uares fit to $\mathrm{E} \gamma$ Levels.	

[^0]
${ }^{\dagger}$ From 2009 Hw 03 . Uncertainty of 0.3 keV assigned as per e-mail reply to XUNDL database compilers from the first author on Sept 21, 2009. The statistical uncertainty according to that e-mail reply is 0.1 keV .
\ddagger From 2009 Hw 03 . Uncertainty of 5% for $\mathrm{I} \gamma>20,15 \%$ for $\mathrm{I} \gamma=2-20$ and 30% for $\mathrm{I} \gamma<2$ assigned by evaluator based on statement in e-mail reply of Sept. 21, 2009 from the first author that the statistical uncertainty is 1% but the total uncertainty (including systematic) is 5% for strong lines and up to 30% for very weak ones. In the assignment of the uncertainty, the number of significant digits has been kept the same as in the partial level scheme in figure 5 of 2009 Hw 03 .
\# Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
${ }^{252} \mathbf{C f}$ SF decay $\quad 2009 \mathrm{Hw} 03,1974 \mathrm{ClZX}$

Level Scheme
Intensities: Relative I_{γ} \qquad γ

$$
{ }_{37}^{92} \mathrm{Rb}_{55}
$$

[^0]: Continued on next page (footnotes at end of table)

