²⁴⁸Cm SF decay 2012Ur01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

Parent: ²⁴⁸Cm: E=0; $J^{\pi}=0^+$; $T_{1/2}=3.48\times10^5$ y 6; %SF decay=?

Dataset includes prompt γ rays from ²⁵²Cf SF decay and delayed γ rays from ²³⁵U(n, γ) E=thermal.

²⁴⁸Cm SF decay: EUROGAM2 array of anti-Compton spectrometers with four LEPS detectors attached; triple-coincidences using 900 ns window and high-fold coincidences using 300 ns window; measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$.

 252 Cf SF decay: Gammasphere detector array; measured $\gamma\gamma\gamma$ coin data (900 ns time window) and $\gamma\gamma$ (t); searched for isomers and measured half-lives.

Compared observed level structure with large-scale shell model calculations and with known structure of ⁹⁴Rb.

92Rb Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	0-		
142.2 2	1-		
284.2 3	3-@	54 ns <i>3</i>	T _{1/2} : from $(1363\gamma)(142.2\gamma)(t)$ (2012Ur01), time spectrum fitted with exponential decay and a constant background. The presence of this isomer was also confirmed in an independent measurement using cold neutron beam facility at Grenoble by measuring delayed γ rays following fission of ²³⁵ U by thermal neutrons using an array of 15 Ge detectors.
430.5 <i>3</i>	(4 ⁻)	<5 ns	T _{1/2} : from 2012Ur01.
1387.6 <i>3</i>	(5 ⁻)		
1426.5 4			
1431.2 4			
1564.5 5			
1647.4 <i>3</i>	(5 ⁻)		
1682.2 3	(6 ⁻)		
1755.5 5	((-))		
1836.6 4	(6 ⁻)		
1958.2 4	(7 ⁺) [@]	7 ns 2	$T_{1/2}$: from $(734.5\gamma)(276\gamma)(t)$ and $(734.5\gamma)(1363\gamma)(t)$ (2012Ur01); time spectra of 276 γ and 1363 γ fitted with exponential decay and a constant background.
1992.1 4			
2259.6 5			
2692.7 4	(8^{+})		
2850.9 5	(8,9)		
2979.3 5	$(9,10^{+})$		
3698.6 5	$(11, 12^+)$		
4788.5 7	(12,13)		
† From l	east-squares	s fit to $E\gamma$ d	lata.

[‡] Authors' suggested values.
 [#] Measured in ²⁵²Cf SF decay using Gammasphere array (2012Ur01).

[@] Interpreted (2012Ur01) as π - ν configuration involving high-j (ν 1h_{11/2}) and (π 1g_{9/2}) orbitals.

 $\gamma(^{92}\text{Rb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult.	α^{\ddagger}	Comments
34.9 2	40 10	1682.2	(6 ⁻)	1647.4 (5 ⁻)	[M1]	2.92 7	$\alpha(K)=2.57$ 6; $\alpha(L)=0.296$ 7; $\alpha(M)=0.0489$ 11; $\alpha(N+)=0.00573$ 13
121.6 2	92	1958.2	(7 ⁺)	1836.6 (6 ⁻)	[E1]	0.0537	α (N)=0.00550 <i>12</i> ; α (O)=0.000229 <i>5</i> α (K)=0.0476 <i>7</i> ; α (L)=0.00518 <i>8</i> ; α (M)=0.000849 <i>13</i> ;

Continued on next page (footnotes at end of table)

				²⁴⁸ C	Cm SF deca	ay 201	l2Ur01 (conti	inued)
γ (⁹² Rb) (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult.	α^{\ddagger}	Comments
142.0 2	145 15	284.2	3-	142.2	1-	E2	0.267	$\begin{aligned} &\alpha(N+)=9.82 \times 10^{-5} \ 15 \\ &\alpha(N)=9.44 \times 10^{-5} \ 14; \ \alpha(O)=3.82 \times 10^{-6} \ 6 \\ &\alpha(K)=0.230 \ 4; \ \alpha(L)=0.0312 \ 5; \\ &\alpha(M)=0.00515 \ 8; \ \alpha(N+)=0.000565 \ 9 \\ &\alpha(N)=0.000547 \ 9; \ \alpha(O)=1.80 \times 10^{-5} \ 3 \\ &(142.0\gamma)(142.2\gamma)(\theta): \ A_2=-0.06 \ I, \ A_4=-0.01 \\ &2; \ not \ M2 \ from \ RUL. \\ &Mult.: \ \Delta J=2, \ Q \ from \ \gamma\gamma(\theta) \ with \ \Delta J=1, \\ &142.2\gamma \ in \ gate. \end{aligned}$
142.2 2	145 <i>15</i>	142.2	1-	0.0	0-	M1	0.0556	B(E2)(W.u.)=7.2 4 (2012UR01); however, the evaluator obtains B(E2)(W.u.)=5.8 4. Apparently 2012Ur01 did not account for the conversion coefficient. α (K)=0.0491 8; α (L)=0.00550 8;
146.3 <i>1</i>	100 5	430.5	(4-)	284.2	3-	[M1]	0.0515	$\alpha(M)=0.000910\ 14;\ \alpha(N+)=0.0001071\ 76$ $\alpha(N)=0.0001028\ 15;\ \alpha(O)=4.38\times10^{-6}\ 7$ $\alpha(K)=0.0455\ 7;\ \alpha(L)=0.00509\ 8;$ $\alpha(M)=0.000842\ 12;\ \alpha(N+)=9.92\times10^{-5}\ 14$ $\alpha(N)=9.52\times10^{-5}\ 14;\ \alpha(O)=4.06\times10^{-6}\ 6$ Mult: (146.3x)(142.0x+142.2x)(4);
189.1 2 276.0 <i>1</i>	16 2 73 5	1836.6 1958.2	(6 ⁻) (7 ⁺)	1647.4 1682.2	(5 ⁻) (6 ⁻)	(E1)	0.00500 7	A ₂ =+0.04 2, A ₄ =+0.32 9; not M2 from RUL. α =0.00500 7; α (K)=0.00443 7; α (L)=0.000478 7; α (M)=7.85×10 ⁻⁵ 11; α (N+)=9.21×10 ⁻⁶ 13 α (N)=8.84×10 ⁻⁶ 13; α (O)=3.73×10 ⁻⁷ 6 B(E1)(W.u.)=2.3E-6 7 (2012UR01). The compiler obtains B(E1)(W.u.)=2.0E-6 6. It
286.6 2 294.6 <i>I</i> 309.9 2 449.0 2 719.3 2 734.5 2	44 <i>4</i> 29 <i>3</i> 21 2 11 2 24 <i>3</i> 70 <i>5</i>	2979.3 1682.2 1992.1 1836.6 3698.6 2692.7	(9,10 ⁺) (6 ⁻) (11,12 ⁺) (8 ⁺)	2692.7 1387.6 1682.2 1387.6 2979.3 1958.2	(8^+) (5^-) (6^-) (5^-) $(9,10^+)$ (7^+)	D		seems 2012Ur01 did not account for conversion coefficient. Mult.: $\Delta J=1$ transition from $(734.5\gamma)(276\gamma)(\theta)$. $(734.5\gamma)(276\gamma)(\theta)$: A ₂ =+0.11 3, A ₄ =+0.08
828.4 3 892.7 3 957.0 2 996.0 2 1000.7 2 1089.9 4 1103.4 2 1134.0 3 1216.9 2 1251.7 2 1325.0 3 1363.2 2	$\begin{array}{c} 6 & 1 \\ 5 & 1 \\ 36 & 3 \\ 4 & 1 \\ 19 & 2 \\ 10 & 2 \\ 16 & 2 \\ 5 & 1 \\ 17 & 2 \\ 26 & 3 \\ 3 & 1 \\ 84 & 4 \end{array}$	2259.6 2850.9 1387.6 1426.5 1431.2 4788.5 1387.6 1564.5 1647.4 1682.2 1755.5 1647.4	(8,9) (5-) (12,13) (5-) (5-) (6-) (5-) (5-)	$\begin{array}{c} 1431.2\\ 1958.2\\ 430.5\\ 430.5\\ 430.5\\ 3698.6\\ 284.2\\ 430.5\\ 430.5\\ 430.5\\ 430.5\\ 284.2\\ \end{array}$	$(7^+) (4^-) (4^-) (4^-) (11,12^+) 3^- (4^-) (4^-) (4^-) (4^-) (4^-) 3^- 3^-$			$(957\gamma)(276\gamma)(\theta): A_2=+0.4 l, A_4=+0.03 2.$

²⁴⁸Cm SF decay 2012Ur01 (continued)

 $\gamma(^{92}\text{Rb})$ (continued)

[†] From ²⁴⁸Cm SF decay.

^{\pm} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁹²₃₇Rb₅₅