History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012							

 $S(n)=1.69\times10^4$ syst; $S(p)=3.6\times10^3$ syst; $Q(\alpha)=-3.1\times10^3$ syst 2012Wa38

Note: Current evaluation has used the following Q record 16.87E3SY 3560 syst -3096 syst 2011AuZZ.

 $\Delta S(n)=710$, $\Delta S(p)=640$, $\Delta Q(\alpha)=585$ (2011AuZZ).

 $Q(\beta^{-}),S(n),S(p),Q(\alpha)$ from 2011AuZZ; -16170 760, 3680 640, -2280 640, respectively, from systematics (2003Au03).

 $Q(\varepsilon p)$ =5880 500 from systematics (2011AuZZ).

Production:

Fragmentation of 112 GeV ¹¹²Sn beam by Be target (2000WeZZ); fragment mass separation, time of flight for identification; four double-sided Si strip detectors, Si β detectors, segmented-clover Ge γ detector; measured T_{1/2}.

 $Ni(^{106}Cd,x)$, $E(^{106}Cd)=60$ MeV/nucleon (1994He28; see also 1995Mo26, 1995He39); fragment mass separator with 150 ns flight path.

Ni(112 Sn,X), E(112 Sn)=63 MeV/nucleon (1995Le08; see also 1995Le14, 1995Ry03); $\approx 1.5 \ \mu$ s flight path between target and Alpha or LISE3 fragment mass analyzers.

Be(¹¹²Sn,x): E=112 GeV (2001Ki13,2002Fa13).

⁵⁸Ni(³⁶Ar,2ny): E=111 MeV (2011Ce01).

Theory: calculation of potential energy surface in an axially-deformed relativistic mean-field approach; deduced binding energy and quadrupole deformation β_2 (2002Pa23).

92Pd Levels

Cross Reference (XREF) Flags

A ${}^{58}\text{Ni}({}^{36}\text{Ar},2n\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
0.0 [#]	0^{+}	$1.0^{\textcircled{0}}$ s +3-2	A	$\%\varepsilon + \%\beta^+ = 100$		
873.6 [#] 2	(2^+)		A			
1786.0 [#] 3	(4 ⁺)		A			
2535.8 [#] 5	(6^{+})		Α			

[†] From $E\gamma$.

[‡] Highly tentative values from (36 Ar,2n γ); consistent with shell-model calculations (2011Ce01). Structure interpreted as evidence for a spin-aligned isoscalar neutron-proton phase in 92 Pd.

Band(A): g.s. band.

[@] From 2007WeZX, 2002StZZ and 2001Ki13; presumed to supersede preliminary value of 0.7 s +4-2 from 2000WeZZ.

 $\gamma(^{92}\text{Pd})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
873.6	(2^{+})	873.6 2	100	0.0	0+
1786.0	(4^{+})	912.4 2	100	873.6	(2^{+})
2535.8	(6^+)	749.8 <i>3</i>	100	1786.0	(4^{+})

[†] From ⁵⁸Ni(³⁶Ar,2n γ).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{92}_{46}{\rm Pd}_{46}$

Adopted Levels, Gammas

