⁹³Nb(p,d) 1984Ru09,1968Ta03

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

92Nb Levels

 $J^{\pi}(^{93}Nb)=9/2^+$.

Other: 1964Sw01.

1964Sw01: E(p)=22 MeV, FWHM=30 keV.

1968Ta03: E(p)=55 MeV, FWHM \approx 100 keV, θ (c.m.) \approx 7°-37°; DWBA.

1984Ru09: E(p)=26.3 MeV, FWHM=25-30 keV, θ (lab)=6°-55°; DWBA.

E(level) [‡]	L^{\dagger}	$C^2S^{\#}$	E(level) [‡]	\mathbf{J}^{π}	L [†]	$C^2S^{\#}$
0.0	2	0.36	2803 12		1	0.14, 0.17
135 12	2	0.20	2946 12		4	1.60
286 12	2	0.13	3015 12		4	0.24
357 12	2	0.10	3047 12		4	0.34
478 12	2 ^{<i>a</i>}	0.18 ^{<i>a</i>}	3110 12		1	0.029,0.037
502 12			3196 12		1	0.015,0.017
1402 12	0	0.015	3251 12		1	0.043,0.048
1557 12	2	0.003	3310 12		1	0.039,0.048
1605 12	0	0.012	3342 12		1	0.069,0.086
1638 12	0	0.006	3404 12		1	0.038,0.049
1713 12	(1)	0.002,0.002	3447 12		1	0.038,0.043
1761 12	2	0.008	3489 12		(4) ^b	0.54
1828 12	0	0.006	3517 12		1	0.065,0.071
2072 12			3615 12			
2142 12			3665 12		1	0.086,0.10
2238 12	1	0.008,0.009	3716 12		1	0.034,0.038
2292 12	(2+4)	@	3806 12		1	0.043,0.052
2390 12	1	0.012,0.015	4079 12		1	0.077,0.095
2503 12	$(1)^{b}$	0.006,0.007	4135 12		4	0.37
2592 12			11.54×10 ³ <i>& 30</i>	5 ⁻	1 ^{<i>c</i>}	
2666 12	1	0.012,0.014	11.80×10 ³ <i>30</i>	(4) [−] ^{<i>C</i>}	1 ^{<i>c</i>}	
2737 12	4	0.43				

[†] For E≤10 MeV: from 1984Ru09, based on DWBA analysis of $\sigma(\theta)$. For E>10 MeV: from 1968Ta03, based on comparison of $\sigma(\theta)$ with that for ⁹⁰Zr(p,d) L=1 transfer to IAS at 8110 keV in ⁸⁹Zr.

[‡] From 1984Ru09, unless noted otherwise. Authors report an uncertainty of 8 to 12 keV.

[#] C²S values are from DWBA analysis by 1984Ru09 which assumes $3s_{1/2}$, $2d_{5/2}$, $1g_{9/2}$ and either $2p_{3/2}$ or $2p_{1/2}$ for L=0,2,4,1 transfers, respectively, and includes finite range corrections and bound state geometry different from that of relevant (d,t) analysis (1971Bh01), resulting in C²S values approximately half of those reported by 1971Bh01. For L=1 transfers, $2p_{3/2}$ values are listed first, then $2p_{1/2}$.

^(a) 1984Ru09 obtain C²S(L=2)=0.014, C²S(L=4)=0.055 from least-squares adjustment of the incoherent sum of DWBA results for $2d_{5/2}$ and $1g_{9/2}$ transitions.

& From 1968Ta03. Authors interpret 11540 and 12800 levels as analogs of the 5^{-92} Zr(2486 level) and the (4)⁻⁹²Zr(2744) level, respectively. Observed splitting of the two analog states is 260 keV 40 (1968Ta03).

^{*a*} L=2, $C^2S=0.18$ for 478+502 doublet.

^b An additional undetermined L transfer contributes.

^c L is based on comparison of σ and $\sigma(\theta)$ with those for known configuration= $(\nu 2p_{1/2})^{-1}$, $J^{\pi} = 1/2^{-89}$ Zr(8110 level). J is based on $(2J_f+1)$ intensity rule, assuming configuration= $((\nu 2p_{1/2})^{-1}(\pi 1g_{9/2}))$ for these ⁹²Nb states.