$^{92}_{41}\text{Nb}_{51}$ -1

⁹²Zr(p,nγ), Y(α,xnγ) 1977Da01,1975Ke12,1974Ku01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012

Other measurements: 1988BeYU, 1979Ba54, 1979Mi08, 1975Le05, 1974BrXM, 1972Ku03, 1971Co06.

1972Ku03: E(p) not given. $90\gamma(t)$.

1974BrXM: $E\alpha$ =14 MeV. $T_{1/2}$ from DSA.

1974Ku01: E(p)=3.0-4.8 MeV. $E\gamma$ (±0.2 keV), $I\gamma$, $\sigma(E)$.

1974Le05: E(p)=5.5 MeV. g-factor from $p-\gamma(\theta,H,t)$.

1975Ke12: E(p)=3.4-5.1 MeV. E γ (±1 keV), $\gamma\gamma$ coin, σ (E) across IAR.

1977Da01: E(p)=3.0-5.0 MeV, E(α)=7.0-12.5 MeV. E γ (±0.5 keV), I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, $\gamma\gamma(\theta)$, σ (E); statistical compound nuclear model analysis of $\gamma(\theta)$, $\gamma\gamma(\theta)$.

1979Ba54: E(p) not given. $I\gamma(+\theta)$ - $I\gamma(-\theta)$ for 749 γ .

1979Mi08: E(p)=5.055, 5.270 MeV. E γ (Δ E=0.2-0.4 keV), I(γ ,ce), γ yield on and off IAR.

1988BeYU: $E\alpha$ =28-32 MeV. Pulsed beam- γ (t).

⁹²Nb Levels

The adopted level scheme is based on information from γ excitation functions (1977Da01,1974Ku01,1975Ke12), Hauser-Feshbach analysis of $\sigma(E)$ (1974Ku01), $\gamma(\theta)$ and $\gamma\gamma(\theta)$ data (1977Da01), conversion electron coefficients (1979Mi08) and $\gamma\gamma$ -coin information (1977Da01,1975Ke12). It is a combination of schemes from 1977Da01, 1975Ke12, 1979Mi08 and 1974Ku01, which are mutually consistent, except for the 1974Ku01 placement of 1129 γ , 1132 γ (placed without the benefit of $\gamma\gamma$ coin data and subsequently rejected by the evaluator).

E(level) [†]	Jπ @	T _{1/2} ‡	Comments
0.0	(7) ⁺ &		
135.5 <i>3</i>			
225.9 3	2 ^{-&g}	4.4 [#] μs 5	J=2,4 from $\gamma(\theta)$.
285.8 <i>3</i>	3+	1.1 ns + 6 - 3	J=3 from $\gamma(\theta)$.
		2	$T_{1/2}$: after correction for cascade feeding (1974BrXM).
357.44 17	5+	1.91 ^e ns 4	J=3,5 from $\gamma(\theta)$. J=3 rejected because it would imply J(g.s.) \leq 5 (unlikely, given T _{1/2} and decay mode of g.s. and 136 (2) ⁺ level).
389.8 <i>3</i>	3- <i>8</i>	≤10 ns	J=3 from $\gamma(\theta)$.
480.51 24	4+	0.62 ns 10	J=4 from $\gamma(\theta)$.
501.40 20	$(6)^{+}$	0.35 ns 5	J=6,8 from $\gamma(\theta)$ if J(g.s.)=7.
975.1 4	$(1^+, 2^-)^f$	≤10 ns	
1089.5 <i>3</i>	1	≤10 ns	J=1 from $\gamma(\theta)$ (1977Da01).
1150.1 4	1-		
1310.8 ^d 6		≤10 ns	J=1,2,3 from $\gamma(\theta)$.
1324.0 4	$(1,2,3)^{-a}$		J=1,2,3 from $\gamma(\theta)$.
1345.7 4	$(2^{+})^{a}$	≤10 ns	J=2 from $\gamma(\theta)$ in (p,n γ); no consistent solution from (α ,2n γ).
1406.3 4	5		
1410.4 ^{<i>a</i>} 6	5+ x		$\gamma(\theta)$ allows J=5, but not J=4.
1415.3 4	4^{+a}	$\leq 10 \text{ ns}$	$J=3,4$ from $\gamma(\theta)$.
1422.8 4	$4^{+}5^{+}$	$\leq 10 \text{ ns}$	$J=4$ from $\gamma(\theta)$.
1408.0 4	4,5		
1472.8 0	1+		
1554.0 4	$(2.3)^{-a}$	<10 ns	J=2.3 from $\gamma(\theta)$.
1565 8 ^b 11	×)-)		
1632 8 ^b 11			
1052.0 11			

Continued on next page (footnotes at end of table)

¹⁹⁷¹Co06: E(p)=6.3 MeV. $E\gamma$, $n-\gamma(t)$, $\gamma\gamma(t)$.

⁹²Zr(p,nγ), Y(α,xnγ) 1977Da01,1975Ke12,1974Ku01 (continued)

⁹²Nb Levels (continued)

E(level) [†]	J ^π @
1642.1 3	1
1650.4 [°] 3	5,6
1666.7 4	1
1678.2 4	1
1738.3 4	0,3
1768.2 ^C 3	4

[†] From least-squares fit to $E\gamma$.

[‡] Upper limits are from 1977Da01, based on observation of level in $\gamma\gamma$ coin; other values are from DSAM (1974BrXM), except as noted.

[#] Weighted average of 4.3 µs 5 (1971Co06), 5.0 µs 10 (1972Ku03).

^(a) From 1974Ku01, based on Hauser-Feshbach analysis of $\sigma(E)$, unless indicated otherwise. Values from 1977Da01, which are based on $\gamma(\theta)$, are given in comments.

& From 1977Da01, based on $\gamma(\theta)$, $\gamma\gamma(\theta)$ from their work combined with L values from others' transfer reaction data, and assuming $J^{\pi}(136 \text{ level})=2^+$.

^{*a*} From 1977Da01. 1974Ku01 obtain J^{π} assignments for 1324,1346,1423,1554 levels (4⁻, (3⁻,4⁻), (4⁺,5⁺), (1), respectively) which differ from those of 1977Da01. 1974Ku01 did not include the weak 934 γ deexciting the 1324-level or the strong 1210 γ deexciting the 1346 level in their analysis, thereby underestimating the total yield of each state and probably overestimating J; also, they associated γ rays deexciting the 1415 and 1423 levels with higher energy states, so deduced J^{π} values for these levels are unreliable.

^b Reported by 1975Ke12 only.

- ^c Reported by 1974Ku01 only.
- ^d Reported by 1977Da01 only.
- ^e Weighted average of 1.89 ns 6 (1971Co06), 1.92 ns 5 (1988BeYU).
- ^{*f*} J \neq 0 because 749 γ is polarized (1979Ba54).
- ^g π =- from IAR enhancement (1979Mi08).

$\gamma(^{92}\text{Nb})$

See 1977Da01 for additional δ values deduced for other J(level) values consistent with authors' A₂ and A₄ data from $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
225.9	2-	90.50 14	135.5	E1		0.1602	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.1408 \ 21; \ \alpha(\mathrm{L}) = 0.01618 \ 24; \\ \alpha(\mathrm{M}) = 0.00283 \ 5; \ \alpha(\mathrm{N}+) = 0.000425 \ 7 \\ \alpha(\mathrm{N}) = 0.000405 \ 6; \ \alpha(\mathrm{O}) = 2.07 \times 10^{-5} \ 3 \\ \alpha(\mathrm{K}) \exp = 0.142 \ 10 \ \text{and} \ 0.145 \ 13, \\ \alpha(\mathrm{L}+) \exp = 0.0198 \ 18 \ \text{and} \ 0.0180 \ 16 \ \text{give} \\ \delta \approx 0. \end{array} $
285.8	3+	150.25 14	135.5	M1(+E2)	+0.070 14	0.0749 12	$\alpha(K)=0.0657 \ 10; \ \alpha(L)=0.00768 \ 13; \alpha(M)=0.001357 \ 22; \ \alpha(N+)=0.000209 \ 4 \alpha(N)=0.000198 \ 4; \ \alpha(O)=1.121\times10^{-5} \ 17 \alpha(K)exp=0.064 \ 6 \ (implying \ \delta \le 0.16). A_2=-0.33 \ 2, \ A_4=+0.01 \ 2 \ (E(p)=3340); A_2=-0.25 \ 1, \ A_4=+0.02 \ 2 \ (E(p)=4000); A_2=-0.16 \ 1, \ A_4=+0.02 \ 1 \ (\alpha \ xng)$
357.44	5+	357.44 17	$0.0 (7)^+$	E2		0.01277	$\alpha(K)=0.01112 \ 16; \ \alpha(L)=0.001368 \ 20;$

 $^{92}_{41}\rm{Nb}_{51}\text{-}3$

⁹²Zr(p,nγ), Y(α,xnγ) 1977Da01,1975Ke12,1974Ku01 (continued)

γ (⁹²Nb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
	-								$\begin{array}{l} \alpha(M)=0.000241 \ 4; \ \alpha(N+)=3.64\times10^{-5} \\ 6 \\ \alpha(N)=3.46\times10^{-5} \ 5; \ \alpha(O)=1.771\times10^{-6} \ 25 \\ A_2=+0.15 \ 5, \ A_4=-0.07 \ 6 \ (E(p)=3340); \\ A_2=+0.17 \ 1, \ A_4=-0.04 \ 2 \ (E(p)=4000); \\ A_2=+0.13 \ 1, \ A_4=0.00 \ 1 \ (\alpha,xn\gamma). \\ Mult.,\delta: \ \alpha(K)exp=0.0119 \ 11, \\ \alpha(L+)exp=0.0013 \ 2 \ (implying \ \delta\approx0); \\ \delta(O,O)=-0.012 \ 21 \ from \ \gamma(\theta); \end{array}$
389.8	3-	104.3 <i>4</i> 164.10 <i>14</i>	<1 97 <i>1</i>	285.8 225.9	3+ 2-	M1+E2	+0.135 23	0.0608 13	(0.0003 from RUL. E _y : from 1979Mi08. $\alpha(K)=0.0533 \ 11; \ \alpha(L)=0.00627 \ 15; \ \alpha(M)=0.00111 \ 3; \ \alpha(N+)=0.000170 \ 4$ $\alpha(N)=0.000161 \ 4; \ \alpha(O)=9.04\times10^{-6} \ 17$ $\alpha(K)\exp=0.053 \ 5, \ \alpha(L+)\exp=0.0070 \ 6$ require $\delta=0.11 \ +13-11 \ \text{and} \le 0.11, \ \text{respectively.}$
		254.09 17	3 1	135.5		E1+M2	+0.20 7	0.0114 25	A ₂ =-0.38 2, A ₄ =+0.03 2 (E(p)=3340); A ₂ =-0.28 <i>l</i> , A ₄ =-0.02 <i>l</i> (E(p)=4000); A ₂ =-0.19 <i>l</i> , A ₄ =0.00 <i>l</i> (α ,xn γ). α (K)=0.0100 22; α (L)=0.0012 3; α (M)=0.00021 5; α (N+)=3.2×10 ⁻⁵ 8 α (N)=3.0×10 ⁻⁵ 8; α (O)=1.7×10 ⁻⁶ 4 α (K)exp=0.0116 <i>l</i> 6, α (L+)exp=0.0023 8.
480.51	4+	123.07 17	24 4	357.44	5+	M1(+E2)	-0.044 25	0.1281 22	A ₂ =−0.16 27 A ₄ =+0.05 8 (E(p)=4000); A ₂ =−0.17 2, A ₄ =0.00 2 (α,xnγ). δ: unweighted average of +0.06 9, 0.25 5 and 0.30 +17−9 from γ(θ), α(K)exp, α(L+)exp, respectively. α(K)=0.1122 19; α(L)=0.0132 3; α(M)=0.00233 5; α(N+)=0.000359 7 α(N)=0.000339 7; α(O)=1.92×10 ⁻⁵ 3 α(K)exp=0.109 11, α(L+)exp=0.016 5 require δ≤0.15. A ₂ =−0.11 5, A ₄ =+0.06 6 (E(p)=4000);
		194.60 <i>14</i>	76 4	285.8	3+	M1		0.0372	A ₂ =-0.14 2, A ₄ =-0.02 3 (E(p)=4500); A ₂ =-0.12 <i>I</i> , A ₄ =+0.03 <i>I</i> (α ,xn γ). 123 γ -358 γ (θ): A ₂ =+0.02 3, A ₄ =+0.04 3 and A ₂ =+0.17 4, A ₄ =+0.07 4 (α ,xn γ). α (K)=0.0326 5; α (L)=0.00377 6; α (M)=0.000665 <i>I</i> 0; α (N+)=0.0001028 <i>I</i> 5 α (N)=9.73×10 ⁻⁵ <i>I</i> 4; α (O)=5.57×10 ⁻⁶ 8 α (K)exp=0.0344 30, α (L+)exp=0.0039 4 [giving δ =0.2 + <i>I</i> -2, cf. δ =+0.009 + <i>I</i> 7- <i>I</i> 8 from $\gamma\gamma(\theta)$, $\gamma(\theta)$]. A ₂ =-0.26 2, A ₄ =+0.01 2 (E(p)=4000); A ₂ =-0.14 2, A ₄ =+0.02 2 (α ,xn γ).

Continued on next page (footnotes at end of table)

92 Zr (n , n γ), Y (α , xn γ)	1977Da01.1975Ke12.1974Ku01 (continued)
$\mathbf{Z}_{\mathbf{I}}(\mathbf{p},\mathbf{n}\gamma), \mathbf{I}(\alpha,\mathbf{x}\mathbf{n}\gamma)$	19//Da01,19/3Ke12,19/4Ku01 (continueu)

					$\gamma(^{\varsigma}$	² Nb) (con	tinued)	
E _i (level)	J^{π}_i	E_{γ}^{\ddagger}	Ι _γ &	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	Comments
501.40	$(6)^+$ $(1^+ 2^-)$	501.4 2		0.0	(7) ⁺ 2 ⁻	D(+Q)	-0.02 +4-3	195γ-150γ(θ): A ₂ =-0.23 2, A ₄ =+0.06 2 and A ₂ =-0.23 2, A ₄ =0.00 2 (α,xnγ). A ₂ =-0.09 7, A ₄ =-0.11 8 (E(p)=4500); A ₂ =-0.18 <i>l</i> , A ₄ =+0.03 2 (α,xnγ). A ₂ =-0.03 2, A ₄ =0.00 2 (E(p)=4000);
1089.5	1	803.8 2	20 2	285.8	3+	(Q)		$\begin{array}{l} A_{2}=0.05\ 2,\ A_{4}=0.00\ 2\ (\alpha, xn\gamma),\\ A_{2}=-0.01\ 1,\ A_{4}=-0.01\ 1\ (\alpha, xn\gamma),\\ A_{2}=-0.02\ 1,\ A_{4}=+0.01\ 2\ (E(p)=4500);\\ A_{2}=+0.05\ 3,\ A_{4}=-0.02\ 4\ (\alpha, xn\gamma),\\ 804\gamma-150\gamma(\theta):\ A_{2}=+0.34\ 5,\ A_{4}=-0.08\ 6\\ and\ A_{2}=+0.15\ 6,\ A_{4}=+0.02\ 7\\ (E(p)=4500),\ incorrectly\ identified\ As\end{array}$
		863.5 2	54 2	225.9	2-	D(+Q)	-0.3 3	954 γ -150 γ (θ) In table II of 1977Da01. Mult.: assumed to be pure Q. A ₂ =-0.04 <i>I</i> , A ₄ =0.00 <i>I</i> (E(p)=4000); A ₂ =-0.03 <i>I</i> , A ₄ =0.00 <i>I</i> (E(p)=4500); A ₂ =-0.04 <i>I</i> , A ₄ =+0.01 <i>I</i> (α ,xn γ). δ : \leq -3 or -0.34 +27-33. Since adopted A ₇ =vas the first colution is unlikely.
		953.8 2	26 2	135.5		D+Q		$A_2 = -0.05 \ 3, A_4 = -0.01 \ 3 \ (E(p) = 4000);$ $A_2 = -0.09 \ 1, A_4 = 0.00 \ 2 \ (E(p) = 4500);$ $A_2 = -0.12 \ 2, A_4 = +0.02 \ 2 \ (\alpha, xn\gamma).$
1150.1	1-	175.2 2	2 1	975.1	(1+,2-)	D+Q		δ : ≤ -0.8 or -0.7 ± 010 . E_{γ} : from 1974Ku01. $\Delta = 0.14.3$ $\Delta = 0.05.3$ (E(p)=4500)
		760.2 2	5 1	389.8	3-			$A_2 = -0.14$ 3, $A_4 = -0.05$ 3 (E(p)=4500); $A_2 = +0.01$ 3, $A_4 = +0.01$ 4 (E(p)=4500); $A_4 = +0.16$ $A_4 = +0.07$ 4 (c) (p)=
		924.08 18	93 2	225.9	2^{-}			$A_2 = +0.01 I, A_4 = -0.01 I (E(p) = 400);$ $A_4 = -0.01 I, A_4 = -0.00 I (E(p) = 0.00);$
1310.8		921.0 5	65 2	389.8	3-			$A_2 = +0.01 I$, $A_4 = 0.00 I$ (α , xhy). E_{γ} : from 1977Da01; not reported by other authors. $A_2 = +0.06 6$, $A_4 = -0.06 6$ (E(p)=4500); $A_2 = +0.01 I$, $A_4 = -0.02 I$ (α , xny). 921 γ -164 $\gamma(\theta)$: $A_2 = +0.20 II$, $A_4 = +0.12 I3$ (E(p)=4500); $A_2 = +0.14 II$, $A_4 = +0.11 I2$
1324.0	(1,2,3)-	934.0 5	53	389.8	3-			$(\alpha, x_{1}\gamma)$. E _y : from 1977Da01.
1345.7	(2 ⁺)	1098.1 2 1059.9 2	95 5 29 2	223.9 285.8	2 3 ⁺	D		$A_{2}=-0.022, A_{4}=0.002(E(p)=4500);$ $A_{2}=+0.03 I, A_{4}=+0.01 I (\alpha, xn\gamma).$ $A_{2}=-0.212, A_{4}=+0.012 (E(p)=4500);$ $A_{2}=-0.303, A_{4}=+0.024 (\alpha, xn\gamma).$ $1060\gamma-150\gamma(\theta): A_{2}=-0.136, A_{4}=-0.097$ and $A_{2}=-0.336, A_{4}=+0.096$
		1210.0 5	71 2	135.5		(D)		(E(p)=4500). E_{γ} : from 1977Da01; not reported by other authors. $A_2 = -0.04 I$, $A_4 = -0.01 I$ (E(p)=4500);
1406.3 1410.4	5 5 ⁺	1120.5 2 909.0 5		285.8 501.40	3 ⁺ (6) ⁺	D		$A_2 = -0.04$ <i>I</i> , $A_4 = +0.01$ <i>Z</i> (α , xn γ). E _{γ} : from 1977Da01; not reported by other authors.
1415.3	4+	933.8 5	50 10	480.51	4+			$\begin{array}{l} A_2 = -0.22 \ 6, \ A_4 = -0.08 \ 7 \ (E(p) = 4500). \\ 934\gamma - 195\gamma(\theta): \ A_2 = +0.02 \ 9, \ A_4 = -0.20 \ 12 \\ \text{or} \ A_2 = -0.07 \ 12, \ A_4 = -0.17 \ 14 \\ (E(p) = 4500); \ A_2 = -0.01 \ 11, \ A_4 = +0.12 \ 11 \end{array}$
		1129.7 2	50 10	285.8	3+			$(\alpha, xn\gamma).$ A ₂ =+0.12 3, A ₄ =-0.01 4 (E(p)=4500).

Continued on next page (footnotes at end of table)

						1)//Duoi,1)/Sixe12,1)/Hxuoi (continueu)				
						γ (⁹² Nb) (continued)			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	Ιγ ^{&}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	Comments		
								1129 γ -150 $\gamma(\theta)$: A ₂ =+0.13 <i>12</i> , A ₄ =-0.03 <i>15</i>		
								(E(p)=4500).		
1422.8	4-	1033.0 2		389.8	3-	D+Q	+0.9 +3-2	$A_2 = -1.00 \ 6, \ A_4 = +0.19 \ 6 \ (E(p) = 4500).$ 1033 γ -164 $\gamma(\theta)$: $A_2 = -1.2 \ 3, \ A_4 = +0.2 \ 3 \ (E(p) = 4500).$		
1468.0	$4^+, 5^+$	1332.4 2		135.5						
1472.8		1083.0 ^b 5	b	389.8	3-			E_{γ} : from 1977Da01; not reported by other authors.		
1401 5	1+	1055 6 0	17	225.0	2-			$A_2 = +0.04 \text{ o}, A_4 = -0.14 \text{ / } (E(p) = 4500).$		
1481.5	1	1255.0 2	1/	125.5	2			A = 0.00 I A = 0.01 I (E(r) - 4500)		
1554.0	$(2 \ 2)^{-}$	1343.9 2	62 2	280.8	2-			$A_2=0.00$ <i>I</i> , $A_4=-0.01$ <i>I</i> (E(p)=4500).		
1554.0	(2,3)	1104.2 2	02 2	369.0	5			$A_2 = -0.082, A_4 = -0.072 (E(p) = +300),$ $A_2 = +0.062, A_4 = -0.073 (\alpha xny)$		
								$1164\gamma - 164\gamma(\theta)$: A ₂ =+0.33 21 A ₄ =-0.30 27 (E(p)=4500); A ₂ =-0.02 14, A ₄ =-0.02 14		
		1328 1 2	38.2	225.0	2-			$(\alpha, x_{II}\gamma)$. A = 0.08.2 A = 10.02.3 (E(p)=4500)		
1565.8		1328.1 2 1280 <i>I</i>	30 2	225.9 285.8	2 3 ⁺			E_{γ} : from 1975Ke12; not reported by other authors		
1632.8		1347 <i>1</i>		285.8	3+			E_{y} : from 1975Ke12; not reported by other authors		
1642.1	1	552.6.2	25	1089.5	1			uullois.		
		1252.5 2	14	389.8	3-					
		1356.1 2	38	285.8	3+					
		1416.2 2	23	225.9	2-					
1650.4	5,6	1149.0 2		501.40	$(6)^+$					
1666.7	1	1276.6 2	68	389.8	3-					
		1441.0 2	32	225.9	2-					
1678.2	1	702.9 2	8	975.1	$(1^+, 2^-)$					
		1452.5 2	92	225.9	2-					
1738.3	0,3	1512.4 2		225.9	2-					
1768.2	4	1287.6 2	65	480.51	4+					
		1482 5 2	35	285.8	3+					

⁹²Zr(p,nγ), Y(α,xnγ) 1977Da01,1975Ke12,1974Ku01 (continued)

[†] Additional information 1.

[‡] Weighted average of data from 1979Mi08 and 1974Ku01 for $E\gamma < 400$; from 1974Ku01 for $E\gamma \ge 400$. Exceptions are noted.

[#] From conversion electron data of 1979Mi08 and/or $\gamma(\theta)$, $\gamma\gamma(\theta)$ data of 1977Da01.

[@] From $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$ data of 1977Da01.

[&] Intensity branchings with uncertainties are from 1977Da01; others are intensity ratios at 90° from 1974Ku01, presumably uncorrected for angular distribution effects. Note that 1974Ku01 obtain different ratios for $I(123\gamma)$: $I(195\gamma)$ (viz., 7:93) and $I(1164\gamma)$: $I(1328\gamma)$ (viz., 53:47).

^a 749 γ is polarized (1979Ba54); this rules out J(975 level)=0.

^b 1977Da01 placed 1083 γ between 1310- and 226-keV levels, without the benefit of coin information, and energy fit is not good. Evaluator has relocated this γ ray between a 1473 level (not previously reported in (p,n γ) or (α ,xn γ)) and the 390 level, in accord with 1083 γ placement in (³He,p2n γ) and with \approx 1082 γ -163 γ coin reported in (⁷Li,3n γ). 1977Da01 report I(921 γ):I(1083 γ)=65 2:35 2.

⁹²Zr(**p**,**n**γ), Y(α,x**n**γ) 1977Da01,1975Ke12,1974Ku01

Level Scheme

Intensities: % photon branching from each level

 $^{92}_{41}\rm{Nb}_{51}$

6