⁸⁸Sr(⁷Li,3nγ) 1977Br12

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012					

⁹²Nb Levels

See also 1976Br24 (for singles γ spectrum).

E(Li)=34 MeV; measured E γ , I γ , $\gamma\gamma$ -coincidences, $\gamma(\theta)$, $\gamma(\theta,H,t)$, pulsed-beam γ timing (FWHM \approx 8 ns) and γ excitation functions.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	J ^{π‡}	$T_{1/2}$
0.0 135.2 <i>11</i> 225.4 <i>11</i> 285.1 <i>11</i> 357.0 <i>10</i>	$7^{+} (2)^{+} (2)^{-} (3)^{+} (5)^{+}$	501.0 <i>3</i> 1308? 1419? 1471? 1945.3 <i>4</i>	$(6)^+$ (7^-)	≤6 ns	2235.7 4 2287.1 5 2998.2 5 3325.9 5 3796.9 ^a 11	$ \begin{array}{r} 10^{(-)} \\ 9^+ \\ 11^+ \\ 13^+ \\ (12,13) \end{array} $	≤ 6 ns ≤ 6 ns ≤ 6 ns ≤ 6 ns
389.2 <i>11</i> 479.5 <i>11</i>	$(3)^{-}$ $(4)^{+}$	2087.5 <i>4</i> 2203.3 ^{&} 4	9- 11-	≤6 ns 167 [@] ns 4			

[†] From least-squares fit to $E\gamma$.

[‡] For E(level)>501 keV, J is deduced by authors on basis of $\gamma(\theta)$, γ branching, $\gamma(t)$, I γ in cascades; otherwise J is from Adopted Levels.

 $^{\#} \leq 6$ ns for levels deexcited by prompt gammas, based on overall time resolution of 8 ns in pulsed beam measurements of 1977Br12.

^{*e*} From delayed measurement of 116γ .

& A g-factor of 0.88 3 was determined from $116\gamma(\theta,H,t)$.

^a Probably not an yrast level (1977Br12).

$\gamma(^{92}\text{Nb})$

Quoted A₂ and A₄ values are from $\gamma(\theta)$ data of 1977Br12.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f J ²	$\frac{\pi}{f}$ Mult. [‡]	Comments
90.2 [#] 2		225.4	(2)-	135.2 (2))+	
115.8 2	18	2203.3	11-	2087.5 9-	Q	$A_2 = +0.28 2, A_4 = -0.04 3.$
122.5 [#] 2		479.5	$(4)^{+}$	357.0 (5))+	
142.2 2	3 ^a	2087.5	9-	1945.3 (7	_)	$I\gamma = 3.0\%$ 10.
148.2 2	44 <mark>a</mark>	2235.7	$10^{(-)}$	2087.5 9-	D	$A_2 = -0.21 2, A_4 = 0.02 2.$
149.9 2	22 ^a	285.1	$(3)^{+}$	135.2 (2))+	
163.8 2	20	389.2	$(3)^{-}$	225.4 (2)) [–] D	$A_2 = -0.17 \ 3; \ A_4 = 0.04 \ 3.$
194.4 [#] 2		479.5	$(4)^+$	285.1 (3))+	
254 1	@	389.2	$(3)^{-}$	135.2 (2))+	
327.7 2	43	3325.9	13+	2998.2 11	+ Q	$A_2 = +0.35 I$, $A_4 = -0.10 I$.
357 [#] 1		357.0	(5)+	0.0 7+	(Q)	Mult.: $A_2 = +0.21 \ 3$, $A_4 = -0.04 \ 4$ for doublet with ⁹¹ Nb G.
471 [#] 1		3796.9	(12, 13)	3325.9 13	+	
501.0 <i>3</i>	41	501.0	(6)+	0.0 7+	D	$A_2 = -0.02 \ 3, \ A_4 = -0.04 \ 3.$
711.1 2	20 ^{&}	2998.2	11 ⁺	2287.1 9+	Q	A ₂ =+0.33 4, A ₄ =-0.11 5. Iy=35% 2.
762.5 2	36 <mark>&</mark>	2998.2	11+	2235.7 10	(-) D	$A_2 = -0.20 \ I$, $A_4 = 0.00 \ 2$. I $\gamma = 65\% \ 2$.

Continued on next page (footnotes at end of table)

⁸⁸Sr(⁷Li,3nγ) 1977Br12 (continued)

γ (⁹² Nb) (continued)									
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments	
795 ^b 919 ^b		2998.2 1308?	11+	2203.3 389.2	11^{-} (3) ⁻			Iγ≤4%.	
1030 ^b		1419?		389.2	$(3)^{-}$				
1082 ^b 1444.5 <i>10</i>	5	1471? 1945.3	(7-)	389.2 501.0	$(3)^{-}$ $(6)^{+}$				
1586.4 10	@	2087.5	9-	501.0	$(6)^{+}$			Iγ=1.2% 4.	
1945 ^{#D} 1	≤10	1945.3	(7 ⁻)	0.0	7+				
2087.4 4	100	2087.5	9-	0.0	7+	M2+E3	+11 2	A ₂ =+0.083 <i>15</i> , A ₄ =-0.128 <i>16</i> ; A ₆ =+0.111 <i>19</i> . Mult.: Q+O from from $\gamma(\theta)$; RUL eliminates E2+M3 for prompt G. I γ =95.8% 11.	
2287.2 [#] 10	≈40	2287.1	9+	0.0	7+	Q		$A_2 = +0.30 2$, $A_4 = -0.06 2$.	

[†] Intensity relative to I(2087 γ)=100. Additional branching ratio information derived from delayed I γ (90°) corrected for the expected $\gamma(\theta)$ (shown in authors' fig. 1) are quoted under comments.

[‡] From $\gamma(\theta)$. Authors identify 328 γ , 711 γ and 2287 γ as stretched L=2 cascade, 763 γ , 148 γ as stretched L=1 cascade, and 116 γ as a stretched Q transition.

[#] Doublet with γ from neighboring nuclide.

[@] Weak line.

& I(711 γ):I(763 γ) disagrees with result from (³He,2n γ). See Adopted Gammas.

^{*a*} $I\gamma(90^{\circ})$ (in intrinsic Ge detector) relative to I(148.2 γ)+I(149.9 γ) observed with Ge(Li) detector.

^b Placement of transition in the level scheme is uncertain.

 $^{92}_{41}\text{Nb}_{51}\text{-}3$

 $^{92}_{41}\text{Nb}_{51}$