		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,2187 (2012)	15-Sep-2012

 $Q(\beta^{-}) = -7882 4$; S(n) = 12670 7; S(p) = 7458 4; $Q(\alpha) = -5604 6$ 2012Wa38

Note: Current evaluation has used the following Q record -7885 5 12672 11 7459 5 -5605 6 2011AuZZ,2003Au03. $Q(\beta^{-})$, S(p), $Q(\alpha)$: from 2011AuZZ; -7870 26, 7462 5, -5607 11, respectively, from 2003Au03.

A new, higher-precision ⁹²Mo mass measurement is available from 2012Ka13.

For theory or systematics see, e.g., 1972Bb08, 1974Gl01, 1977Ha44, 1992Si03, 1992Si14, 1993Ha37, 1999Zh32, 2009Zh11, 2009St05. Other Reactions:

(HI,xn γ) (1985Ra09): E(¹²C,¹³C)=48 MeV, E(¹⁶O)=56 MeV. Measured 148 $\gamma(\theta,H,t)$ in single-crystal Zr; $\theta=0^{\circ}$, 90°. Determined Q=0.34 for 2760, 8⁺ level.

 64 Ni+ 28 Si, E=137 MeV (1990Gu20); 16 O+ 76 Se, E=50, 72.2 MeV (1992Ki01): measured high-energy γ spectra and $\gamma(\theta)$ from decay of GDR built on highly-excited high-spin states. Deduced $\Gamma(GDR)=7.6$ MeV 1 (1992Ki01), 8.6 MeV 2 (1992Ki01), 12.1 MeV 10 (1990Gu20) for average spins of 9ħ, 19.5ħ, 33ħ, respectively.

⁹²Mo Levels

Cross Reference (XREF) Flags

Α	92 Tc ε decay	I	⁹² Mo(p,p'), (pol p,p')	Q	⁹⁰ Zr(¹² C, ¹⁰ Be), (¹⁶ O, ¹⁴ C)
В	64 Ni(32 S,2n2p γ),	J	$^{92}Mo(d,d')$, (pol d,d)	R	92 Mo(14 C, 14 C'), (14 N, 14 N')
С	90 Zr(α ,2n γ)	K	92 Mo(³ He,dp)	S	92 Mo(γ ,xn), (γ ,pn)
D	92 Mo(γ,γ'), (pol γ,γ')	L	92 Mo(α, α')	Т	92 Mo(³ He, ³ He')
Е	92 Mo($\alpha, \alpha' \gamma$)	Μ	⁹⁴ Mo(p,t), (pol p,t)	U	⁹² Mo(¹⁶ O, ¹⁶ O')
F	92 Mo(p,p' γ)	N	$^{59}Co(^{37}Cl,2p2n\gamma),$	V	⁹³ Ru <i>ɛ</i> p decay
G	92 Mo(n,n'), (n,n' γ)	0	90 Zr(³ He,n)	W	$^{74}\text{Ge}(^{28}\text{Si},2\alpha2n\gamma)$
Н	92 Mo(e,e')	Р	Coulomb excitation	X	82 Se(16 O,6n γ)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments				
0.0&	0+	stable	ABCDEFGHIJKLMNOPQR TU WX	T _{1/2} : For (0ν+2ν) double β decay, 1997Ba35 report (at 90% confidence level) lower limits of 1.9×10^{20} y, 8.9×10^{20} y and 8.1×10^{20} y, respectively, for β ⁺ ε(to Zr g.s.), εε(to Zr 449 level) and εε(Zr 935 level); these data supersede earlier data from the same research group (1995Au09). For neutrinoless double β decay of ⁹² Mo, 2011Le23 report a lower limit of 2.3×10^{20} y at 90% confidence level. Other lower limits on T _{1/2} : 3×10^{17} y, from nonobservation of β ⁺ ,ε(2ν) double β decay (1985No03); 2.7×10^{18} y for β ⁺ ,ε(0ν) (1987El13); 3×10^{18} y for double-ε decay (1982Be20). <rb></rb> <rp></rp>				
1509.51 ^{&} 3	2+	0.35 ps 2	ABCDEFGHIJKLMNOPQR TU WX	$\begin{array}{l} \mu=+2.3 \ 3\\ \mu: \ \mbox{From g=+1.15$} \ 14, \ \mbox{weighted average of $+1.3$} \ 5 \ (2001Ma17, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				

Continued on next page (footnotes at end of table)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
2282.61 ^{&} 5	4+	>3.4 ps	ABC FGHIJKLMN	WX	B(E4)↑=0.0034 9 (1987MiZL) J ^π : L=4 in (p,p'), (α,α'), (p,t).
2519.53 21	0^{+}	>3.4 ps	DFG kMO		$J_{1/2}^{\pi}$: L=0 in (p,t), (³ He,n). T _{1/2} : from (p, p' ₂)
2526.96 ^a 6	5-	1.55 ns 4	ABC FGHIJKL N	X	B(E5) \uparrow =0.00341 17 (1987MiZL) XREF: k(2530). J ^π : L=5 in (p,p'), (α,α'). T _{1/2} : from 1971Co08 in (p,p'γ).
2612.41 ^{&} 6	6+	1.53 ns 4	AC FGHI LN	WX	B(E6)↑=0.00027 5 (1987MiZL) J ^π : L=6 in (α, α'). T _{1/2} : from ⁹² Tc ε decay.
2634.2? [#] 15	(1) [@]		D		
2760.52 ^{&} 14	8+	190 ns <i>3</i>	AC GHI N	WX	Q=-0.34; μ =+11.30 5 Q: differential perturbed angular distribution (1989Ra17 from 1985Ra09). Sign of Q from 1991Ha04 (TDPAD) in ⁵⁹ Co(³⁷ Cl,2p2n γ)). μ : from (α ,2n γ); TDPAD (1977Ha49). Other: +11.35 8 (1989Ra17, recalculation of datum from 1977Ku22, TDPAD). μ calculation: 1998Jo17. J ^{π} : E8 excitation in (e,e'). T _{1/2} : weighted average of 192 ns 7 (⁹² Tc decay), 206 ns <i>11</i> and 191 ns 7 and 219 ns 22 in (α ,2n γ), and 184 ns 5 and 195 ns <i>13</i> from (n,n' γ).
2838.6? [#] 5	(1)@		D		
2849.81 5	3	0.27 ps +10-5	EFGHIJKLM R		B(E3) [†] =0.0760 25 (1987/MiZL) J ^{π} : L=3 in (p,p'), (α , α'), (p,t), (¹⁴ C, ¹⁴ C'). T _{1/2} : weighted average from (α , $\alpha'\gamma$), (p,p' γ). For summary of B(E3) [†] data, see 1989Sp01; recommended value is 0.070 24 based on b ₃ from angular distribution in (p,p'). This corresponds to 5.3% 18 of energy-weighted E3 sum rule.
2922.6? [#] 6	$(1)^{(0)}$		D		
3006.96 8	(4,5)		C FG I		J [*] : D+Q 480 γ to 5 2527; weak 157 γ to 3 2850; level population in (n,n' γ) rules out J=6 and favors J=4 (2010Go15). L=5 in (p,p') but level only weakly excited.
3063.63 7	(4 ⁻)		C FG I		J ^{π} : D+Q 537 γ to 5 ⁻ 2527; 214 γ to 3 ⁻ 2850; δ (537 γ)=14 3 makes π =+ unlikely; 1123 γ from (6 ⁺) 4187. However, B(M2)(W.u.) for 306 γ from 4 ⁺ 3369 exceeds RUL, unless T _{1/2} (3369) exceeds 80 ns (which seems far too large to have remained unobserved); alternatively, the 305 γ may be complex in (n,n' γ) making δ unreliable (see comment on 305 γ).
3091.35 6	2+ [@]	27 fs 3	DEFGHIJ LM		XREF: J(3120). $T_{1/2}$: unweighted average of 22 fs <i>12</i> (1971Y002), 35 fs <i>3</i> (1973DoZB in (p,p' γ)), 30.3 fs <i>21</i> from B(E2) (1987MiZL in (e,e')), 27 fs <i>3</i> (1977Me01 in (ws')) and 21 fs (1975Pe10 in (c, r's))
3368.68 7	(4 ⁺)	>3.4 ps	C FGHI		B(E4) \uparrow =0.00037 <i>11</i> (1987MiZL) J ^{π} : E4 excitation of 3369 level in (e,e'). Also: Q 1859 γ to 2 ⁺ 1510, D+Q 362 γ to (4,5) ⁻ 3007 and

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF		Comments
						D+Q 1086 γ to 4 ⁺ 2283. However, $\delta(362\gamma)$ and $\delta(305\gamma)$ are too large for $\Delta\pi$ =yes transitions, unless the 3369 level has a significantly long half-life. T _{1/2} : from (p,p' γ).
3380.4 8	(6 ⁻)		_		W	J^{π} : M2 1098 γ to 4 ⁺ 2283.
3384.5?# 8 3542.31 7	(1) ^w 2 ⁺	35 fs 16	D D FGHI	M		J^{π} : L=2 in (p,t), (p,p'); E2 3542 γ to 0 ⁺ g.s. T _{1/2} : from B(E2)=0.0020 6 in (e,e') and adopted branching. Others: 90 fs +40-30 (1973DoZB), 61 fs
3579.81 6	3-	>0.21 ps	FGHI	L		(1973Pare) in (p,p'). B(E3) \uparrow =0.0044 4 (1987MiZL) J^{π} : L=3 in (α, α'), (p,p').
3621.06 7	(≤4)	>0.21 ps	FG i			$I_{1/2}$: from (p,p' γ). J^{π} : 2112 γ to 2 ⁺ 1510. $T_{1/2}$: from (p,p' γ)
3624.13 ^{<i>a</i>} 17 3651.82 ^{<i>#</i>} 11	7^{-}		BC GHi D	N	WX	J^{π} : E7 excitation in (e,e').
3688.77 7	$1^{(-)},2,3$	>0.69 ps	FG			J^{π} : D(+Q) 2179 γ to 2 ⁺ 1510; 838 γ to 3 ⁻ 2850. T _{1/2} : from (p,p' γ).
3692 7 3753.2 8 3757.25 10	4+		I C C GI			J^{π} : L(p,p')=4. J^{π} : 385 γ to 4 ⁺ 3369, 689 γ to (4 ⁻) 3064 so J^{π} =(3,4,5). XREF: I(3765).
3814.58 8	2,3	>0.48 ps	FG I			J^{π} : 1230 γ to 5 ⁻ 2527 suggests J=(3 to 7). J^{π} : D(+Q) 2305 γ to 2 ⁺ 1510; D(+Q) 965 γ to 3 ⁻ 2850.
3841.87 12	0^{+}	>0.21 ps	FG I	M		J^{π} : L=0 in (p,t). True: from DSAM in (p,p'a)
3871.5 <i>10</i> 3876.62 <i>9</i>	(≤4) 4 ⁺		C FGHI			$J_{1/2}^{\pi}$: 2362 γ ray to 2 ⁺ 1510. B(E4) \uparrow =0.0015 3 (1987MiZL) J^{π} : L(p,p')=4; Q 2367 γ to 2 ⁺ 1510.
3926.36 9	2 ⁺ @	10.6 fs 12	D FGHI	LM		$T_{1/2}$: weighted average of 10.7 fs 22 from (γ, γ') and 10.5 fs 13 from B(E2)=0.0188 20 in (e,e'), with uncertainty (1.1 fs) increased to that for most precise measurement. Others: 17 fs +17-10 (1973DoZB), 20 fs +20-12 (1975Pa19).
3944.92 <i>13</i>	1@	6 fs 4	D FG i			XREF: i(3952). $T_{1/2}$: from (γ, γ') ; value rises to 9.7 fs 14 if only the 3945 γ deexcites this level. Others: 10 fs +10-3 (1973Do7B) 21 fs +20-12 (1975Pa19) in (p p' γ)
3953.2? 4			Gi			(1975) 2020), 21 (18 + 20 - 12 (1975) arg) in (p,p γ). XREF: i(3952). I^{π} : 1341 γ to 6 ⁺ 2612 so I=(4 to 8)
3963.19 16	4+	>0.21 ps	FG I			J^{π} : L=4 in (p,p'). T _{1/2} : from DSAM in (p, p' γ).
3964.3? 13	(2) [@]		D			1/2. nom Dorini in (pp 7).
4019.31 11	2(-)		GHI			J^{π} : 1492 γ to 5 ⁻ 2527, so J=(3 to 7).
4115.81 10	3` ',4 4+		GHL	м		J^{-1} : D(+Q) 18339 to 4 2283; D+Q 12669 to 3 2850. 15899 to 5 ⁻²⁵²⁷ makes 3 ⁺ unlikely.
4140 3	$\frac{4}{1(-)}$		n c;	11 1		J ^{(1)} : L(p,l)=4.
+140.08 13	1. 7		U G I	T		J^{π} : D 2639 γ to 2 ⁺ 1509; D, $\Delta\pi$ =(yes) 4148 γ to 0 ⁺ g.s.
4150.36 9	4 ⁽⁺⁾ ,5 ⁽⁻⁾		Gi	1		XREF: i(4159)l(4160). J^{π} : D+Q 1623 γ to 5 ⁻ 2527; D(+Q) 1868 γ to 4 ⁺ 2283;

⁹²Mo Levels (continued)

E(level) [†]	J^{π}	T _{1/2}			XREF		Comments
							1301γ to 3 ⁻ 2850. L(p,p')=4+5 for E=4159 7:
							probably this is $L=4$ component.
4159.47 15	5-			GHi			$B(E5)\uparrow=0.0048 \ 4 \ (1987MiZL)$
							XREF: i(4159).
							J^{π} : L(p,p')=4+5 for E=4159 7 doublet. E5 excitation in
							(e,e').
4187.20 18	(6^{+})			GHI			J^{π} : L=(6) in (p,p'); Q 1905 γ to 4 ⁺ 2283.
4241.29 16	5,6,7			G			J^{π} : D(+Q) 1629 γ to 6 ⁺ 2612.
4251.0 ^a 3	9-		BC	G	N	WX	J^{π} : stretched E2 627 γ to 7 ⁻ 3624.
4280.73 14				GΙ			J^{π} : 1998 γ to 4 ⁺ 2283 so J=(2 to 6).
4300 5	2+				lM		XREF: 1(4310).
							J^{π} : L=2 in (p,t).
4307.44 10	2,3			G			J^{π} : D(+Q) 2798 γ to 2 ⁺ 1510; D(+Q) 1458 γ to 3 ⁻
							2850.
4315.2 4	5-			GHI	1		B(E5)↑=0.00035 5 (1987MiZL)
							XREF: l(4310).
							J^{π} : E5 excitation in (e,e').
4328.5? 10			С	G	1		XREF: l(4310).
							J^{π} : 1568 γ to 8 ⁺ 2761, so J=(6 to 10); J=7,8 favored by
							level population in $(n,n'\gamma)$.
4345.78 19				GHI			J^{π} : 2063 γ to 4 ⁺ 2283; 1339 γ to (4,5) ⁻ 3007.
4429.51 11	3			GΙ			J^{π} : D+Q 2147 γ to 4 ⁺ 2283; D(+Q) 1579 γ to 3 ⁻ 2850;
							2920 γ to 2 ⁺ 1510; $\gamma(\theta)$ in (n,n' γ) rules out J=4
							(2010Go15).
4436.05 13	3,4,5			G			J^{π} : D+Q 2154 γ to 4 ⁺ 2283; 1372 γ to (4 ⁻) 3064.
4436.42 16	(a. (. 5)			G			J^{n} : 1429 γ to (4,5) ⁻ 3007.
4455.01 15	(3,4,5)			G			J^{π} : 2173 γ to 4 ⁺ 2283, 1391 γ to (4 ⁻) 3064.
4477.80 18	$3^{(-)}, 4^{(+)}, 5$			G			J^{π} : D+Q 2195 γ to 4 ⁺ 2283 allows J=3,5, but makes
							$J^{\pi}=4^{-}$ unlikely; 1951 γ to 5 ⁻ 2527; absence of level in
							(e,e') possibly suggests an unnatural parity state,
							thereby favoring $J^{\pi}=5^+$.
4483.36 22				G			J^{π} : 1956 γ to 5 ⁻ 2527, so J=(3 to 7).
4486.0 ^{<i>a</i>} 3	11-	8.74 ns <i>18</i>	BC		N	WX	$\mu = +13.93$
							J^{n} : E2 235 γ to 9 ⁻ 4251.
							$T_{1/2}$: weighted average of 8.7 ns 2 (19/1Le19), 9.2 ns
							5 (1977Ha49), 8.2 ns 8 (from $(\alpha, 2n\gamma)$, $({}^{32}S, 2n2p\gamma)$
							and $({}^{16}\text{O},6n\gamma)$, respectively).
							μ : differential perturbed angular distribution (1989Ra17
							from 1977Ha49), if J=11, from $({}^{32}S,2n2p\gamma)$. Other:
							+14.17 13 (1989Ra17, revision of datum from
							1977Ku22), TDPAD.
4493.92 17	2+		D	GHI	M		B(E2)↑=0.0065 7 (1987MiZL)
							J^{π} : L=2 in (p,t).
4509.6 10	4+		E		L		E(level): Δ E(level) assumes unstated Δ E for 3000 γ is
							3 keV.
							J^{n} : $L(\alpha, \alpha') = 4$.
4544.40 17	_			G			J^{π} : 2262 γ to 4 ⁺ 2283, so J=(2 to 6).
4554 7	//-			HI			$B(E')\uparrow=0.000107/11(198/MiZL)$
4572.2.2	(- 1)			~			J [*] : E/ excitation in (e,e').
4573.3 3	(≤4)			G			$J^{*}: 3064\gamma$ to 2 ⁺ 1510.
4589.64 23	2(+)		D	GHI	L		$B(E2)\uparrow=0.052$ 12 (198/MiZL)
							XKEF: I(4598).
1620 65 10	(2+2,4+)			~			J ^{**} : (E2) excitation in (e,e'); Q 4590 γ to 0' g.s.
4030.05 19	(2',3,4')			G			J^{**} : 5121 γ to 2' 1510; 2349 γ to 4' 2283.
4633.73 10	(1 ⁻)	3.7 fs 6	D	GHI			$T_{1/2}$: from (γ, γ') , assuming only 2 gammas deexcite

Continued on next page (footnotes at end of table)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}]	XREF		Comments
							level. However, see comment on 3125γ from this
4652.7 3	(≤4)			GΙ			J^{π} : 3143 γ to 2 ⁺ 1510; 1803 γ to 3 ⁻ 2850, so J^{π} =(1 ⁻ ,2,3,4 ⁺).
4663.2 6	1@		D				
4685.1 3	(6 ⁻)			GHI			J^{π} : (M6) excitation in (e,e'); D+Q 2158 γ to 5 ⁻ 2527.
4/02.73 24	(≤ 4) Δ^+			G GHT			J [*] : 3193γ to 2 ⁺ 1510. B(F4) $\uparrow=0.0012_3$ (1987Mi7I.)
7725.2 5	-			UIII			J^{π} : L=4 in (p,p').
4734.3? 4				G			J^{π} : 1366 γ to 4^+ 3369.
4781.51 21	(2,3 ⁺ ,4 ⁺)			GΙ			J^{π} : 3272 $\gamma(\theta)$ to 2 ⁺ 1510 in (n,n' γ) allows J^{π} =2,3 ⁺ ,4 ⁺ (2010Go15).
4848.3 10	(10^{+})					W	J^{π} : stretched Q 2088 γ to 8 ⁺ 2760.
4893.3.3	4+			GHT			$J^{\pi}: L = 4$ in (p p').
4917.9 5	7+		Α	Н			J^{π} : M7 excitation in (e,e').
4924 7	3-			I	lM		XREF: $l(4940)$. J ^{π} : L=3 in (p,t).
4936.1 6	$(1)^{@}$		D				
4944.7 10	(1)@		D				
4948.7 <i>3</i>	(3,4 ⁺)			G			J^{π} : 3440 γ to 2 ⁺ 1510; 2666 γ to 4 ⁺ 2283; 1941 γ to (4,5) ⁻ 3007; level population is not consistent with 2 ⁺ .
4970.7 5	$(1,2^{+})$		D	GHI	1		XREF: I(4964)I(4940). J ^{π} : (D) 3462 γ to 2 ⁺ 1510; excitation in resonance
4070	4			u			Huorescence. I^{π} : E4 M4 excitation in (e e')
5003.6.4	$(2)^{+}@$	22 fs 15	л	п Сі			$J = E_{4}$, $M_{4} \in \text{constant}(0, 1)$ Theorem DSAM in (p, p'_{2})
5005.0 4 5007	(2) (1^{-})	22 18 15	D	Hi			$B(E1)\uparrow=0.0005 4 (1987MiZL)$
	. ,						XREF: H(5007).
5076 6 2	4			<u>с</u> т			J^{π} : (E1) excitation in (e,e').
50/6.6 3	4 '			GI	Im		AREF: $I(5090)m(5090)$. I^{π} : $I = 4$ in (p p')
5088 6	4+			HI	lm		$B(E4)\uparrow=0.0032 \ 4 \ (1987MiZL)$
							XREF: 1(5090)m(5090).
							J^{π} : E4 excitation in (e,e').
5121.7 4	(10 ⁺)	<0.7 ps	С		N	WX	Predominant configuration= $((\pi \ 1g_{9/2})^{-1}(\pi \ 2d_{5/2}))$. T _{1/2} : from RDM in (³⁰ Si,2p2n γ).
5150 5	o.+						J^{π} : stretched Q 2361 γ to 8 ⁺ 2760.
5150 5	0' (10 ⁻ 11 ⁻ 12 ⁻)		C		M		J^{n} : L=0 in (p,t). I^{π} : (M1) transition to (11 ⁻) level
5174 7	(10,11,12)		C	I			
5190 7				I			
5271 7	e			I			
5283.0 21	$(1)^{(1)}$		D	-			
5289 /	(5)		c	1			J^{n} : L=(5) in (p,p'). I^{π} : χ to (8) ⁺ in (α 2n χ) so I=(6 to 10)
5316 6	3-		C	I	LM		J^{π} : L=3 in (α, α'), (p,t).
5331.7 9	(1) [@]		D				
5353 7				I			
5388 7				I			E(level): doublet in (p,p') .
J4J2 /	(1)@		п	1 -			
5451.0 9 5462 9 5	$(1)^{-1}$ $(7.8)^{+}$		لا ۸	T			I^{π} : log $ft=5.7$ for a decay from $(8)^+$ ^{92}Tc . Feeds 6^+
5702.7 5	(7,0)		п				$3 \cdot 105 J^{\mu} = 5.7$ for a decay from (6) for feeds 0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(level) [†]	J^{π}	T _{1/2}		2	XREF		Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5467 7	(4^{+})			т			and 8^+ levels.
5527.4 5 (1) [@] D 5601 7 I m XREF: m(5620). 5611.2 15 I J ^π : L(p,t)=3 for level with E=5620 25. 5623.8 10 (1) [@] D 5623.8 10 (1) [@] D 5623.7 (2 ⁺ , 3 ⁻) I Im 5637 (2 ⁺ , 3 ⁻) I Im XREF: l(5656). 5658 7 I 1 XREF: l(5656). Soft level whose E=5620 25. 5658 7 I 1 XREF: l(5656). Soft level whose E=5620 25. 5679 7 I 1 XREF: l(5656). Soft level whose E=5620 25. 5703.4 4 1 [@] D I Im XREF: l(5780). 5710 7 I 1 XREF: l(5780). J ^π : L(p,p')=(3,2). 5789.1 3 1 [@] D J ^π : L(p,p')=(0). 5801.3 7 (1) [@] D J ^π : L(p,p')=(0). 5841.7 11 1 [@] D Im J ^π : L(p,p')=(0). 5841.7 13 1 [@] D Im J ^π : L(p,p')=(0). 5841.7 13 1 [@] D Im <td< td=""><td>5517? 7</td><td>(4)</td><td></td><td></td><td>ī</td><td></td><td></td><td>L(p,p) - (4).</td></td<>	5517? 7	(4)			ī			L(p,p) - (4).
501 7IIIII561 1.2 15IIIII561 1.2 15IIII5623.8 10(1) [@] D5629.9 191 [@] D5631 7(2 ⁺ ,3 ⁻)IImS631 7(2 ⁺ ,3 ⁻)IImS703 41 [@] DS7145 7I1XREF: 1(5656).S7045 7I1XREF: 1(5780).S784 7(3 ⁻ ,2 ⁺)I1XREF: 1(5780).S784 7(3 ⁻ ,2 ⁺)I1XREF: 1(5780).S806 7(0 ⁺)DJ ^π : L(p,p')=(0).S811.3 71 [@] DJ ^π : L(p,p')=(0).S81.4 73 ⁻ IME(level): doublet in (p,p').S81.7 111 [@] DJ ^π : L=3 in (p,t).S861.9 4(12 ⁺)35 ps 3CNWXS894 7(3 ⁻)ILJ ^π : L=3) in (a,a').S950 7S ⁻ IMJ ^π : L(p,t)=5.	5527.4 <i>5</i>	(1) [@]		D	т	m		XDEE: m(5620)
5611.2 I5 W J^{π} : 763γ to (10 ⁺) 4848. 5623.8 I0 (1) [@] D 5629.9 I9 1 [@] D 5631 7 (2 ⁺ ,3 ⁻) I Im XREF: l(5656)m(5620). 5637 (2 ⁺ ,3 ⁻) I Im XREF: l(5656). 5679 7 I 1 XREF: l(5656). 5703 4 1 [@] D Jack Stresson Jack Stresson 5710 7 I 1 XREF: l(5780). Jack Stresson 5745 7 I 1 XREF: l(5780). Jack Stresson 5784 7 (3 ⁻ , 2 ⁺) I 1 XREF: l(5780). 5801.3 7 (1) [@] D Jack Stresson Jack Stresson 5806 7 (0 ⁺) I J ^π : L(p,p')=(0). Jack Stresson 5844 7 3 ⁻ I M E(level): doublet in (p,p'). J ^{ack} : L=3 in (p,t). 5894 7 (3 ⁻) I L J ^{ack} : L=(3) in (a,a'). J ^{ack} : L=(3) in (a,a'). 5950 7 5 ⁻ I M J ^{ack} : L=(3) in (a,a').	5001 7				1	m		J^{π} : L(p,t)=3 for level with E=5620 25.
5623.8 IO (1) ⁶⁰ D 5629.9 $I9$ 1 ⁶⁰ D 5631 7 (2 ⁺ ,3 ⁻) I Im XREF: l(5656)(5620). 5658 7 I 1 XREF: l(5656). Sor level whose E=5620 25. 5658 7 I 1 XREF: l(5656). 5679 7 I 1 XREF: l(5656). 5703.4 4 1 ⁶⁰ D T 5745 7 I 1 XREF: l(5780). 5784 7 (3 ⁻ , 2 ⁺) I 1 XREF: l(5780). 5789.1 3 1 ⁶⁰ D J ^π : L(p,p')=(3,2). 5780.3 7 (1) ⁶⁰ D J ^π : L(p,p')=(0). 5806 7 (0 ⁺) I J ^π : L(p,p')=(0). 5841.7 11 1 ⁶⁰ D J ^π : L=3 in (p,t). 5861.9 4 (12 ⁺) 35 ps 3 C N WX J ^π : L=3 in (p,t). 5894 7 (3 ⁻) I L J ^π : L=(3) in (α, α'). 5950 7 5 ⁻ 5950 7 5 ⁻ I M J ^π : L(p,t)=5. 1	5611.2 15	Ø					W	J^{π} : 763 γ to (10 ⁺) 4848.
5629.9 19 1° D 5631 7 $(2^+,3^-)$ I Im XREF: 1(5656). 5658 7 I 1 XREF: 1(5656). 5679 7 I 1 XREF: 1(5656). 5703.4 4 1° D 5710 7 I 5747 7 I 1 XREF: 1(5656). 5703.4 5703 7 I 1 XREF: 1(5780). 57847 5784 7 (3^-,2^+) I 1 XREF: 1(5780). 5789.1 3 1° D 5801.3 7 (1)° D 5806 7 (0 ⁺) I J ^π : L(p,p')=(0). 5841.7 11 1° D 5841.7 11 1° D 5861.9 4 (12 ⁺) 35 ps 3 C N WX J ^π : L=3 in (p,t). 5894 7 (3 ⁻) I L J ^π : L=(3) in (α, α'). 5950 7 5 ⁻ I M J ^π : L(p,t)=5.	5623.8 10	(1) ^w		D				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5629.9 <i>19</i> 5631 7	1° (2+ 3 ⁻)		D	т	1		YDEE: $1(5656)m(5620)$
5658 7 I I 1 XREF: 1(5656). 5679 7 I I XREF: 1(5656). 5703.4 4 1 [@] D 5710 7 I I XREF: 1(5780). 5784 7 (3 ⁻ ,2 ⁺) I I XREF: 1(5780). 5789.1 3 1 [@] D J ^π : L(p,p')=(3,2). 5789.1 3 1 [@] D J ^π : L(p,p')=(0). 5801.3 7 (1) [@] D J ^π : L(p,p')=(0). 5841.7 11 1 [@] D J ^π : L(p,p')=(0). 5844 7 3 ⁻ I M E(level): doublet in (p,p'). J ⁷ : L=3 in (p,t). J ⁷ : L=3 in (p,t). J ⁷ : L=3 in (p,t). 5861.9 4 (12 ⁺) 35 ps 3 C N WX J ^π : stretched E2 740 γ to (10 ⁺) 5122; 1374 γ to 11 ⁻ 4486. T _{1/2} : from RDM in (³⁰ Si,2p2n γ). 5894 7 (3 ⁻) I L J ^π : L=(3) in (α,α'). 5950 7 5 ⁻ I M J ^π : L(p,t)=5. J ^π : L(p,t)=5.	50517	(2,3)			1	TIII		J^{π} : L(p,p')=(2,3). L(p,t)=3 for level whose E=5620 25.
56/9 / I I XREF: I(5656). 5703.4 4 1 [@] D 5710 7 I I 5745 7 I I 5784 7 (3 ⁻ ,2 ⁺) I I 5789.1 3 1 [@] D 5801.3 7 (1) [@] D 5806 7 (0 ⁺) I J ^π : L(p,p')=(0). 5841.7 11 1 [@] D 5844 7 3 ⁻ I M 5861.9 4 (12 ⁺) 35 ps 3 C N WX J ^π : L=3 in (p,t). 5122; 1374y to 11 ⁻ 4486. T _{1/2} : from RDM in (³⁰ Si,2p2ny). 1 ⁻ 1486. T _{1/2} : from RDM in (³⁰ Si,2p2ny). 1 ⁻ 1486. 5950 7 5 ⁻ I M	5658 7				I	1		XREF: 1(5656).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56797	1 @		-	I	T		XREF: I(5656).
5745 7 I I XREF: 1(5780). 5784 7 $(3^-, 2^+)$ I I XREF: 1(5780). 5789.1 3 1 [@] D J ^{π} : L(p,p')=(3,2). 5789.1 3 1 [@] D J ^{π} : L(p,p')=(0). 5801.3 7 (1) [@] D J ^{π} : L(p,p')=(0). 5841.7 11 1 [@] D J ^{π} : L(p,p')=(0). 5841.7 11 1 [@] D J ^{π} : L=3 in (p,t). 5861.9 4 (12 ⁺) 35 ps 3 C N WX J ^{π} : stretched E2 740 γ to (10 ⁺) 5122; 1374 γ to 11 ⁻ 4486. T _{1/2} : from RDM in (³⁰ Si,2p2n γ). J ^{π} : L=(3) in (α, α'). J ^{π} : L=(3) in (α, α'). 5950 7 5 ⁻ I M J ^{π} : L(p,t)=5.	5703.4 4 5710 7	10		D	т			
5784 7 $(3^-, 2^+)$ I I XREF: 1(5780). 5789.1 3 1 [@] D J ^{π} : L(p,p')=(3,2). 5801.3 7 (1) [@] D J ^{π} : L(p,p')=(0). 5806 7 (0 ⁺) I J ^{π} : L(p,p')=(0). 5841.7 11 1 [@] D J ^{π} : L(p,p')=(0). 5844 7 3 ⁻ I M E(level): doublet in (p,p'). J ^{π} : L=3 in (p,t). J ^{π} : stretched E2 740 γ to (10 ⁺) 5122; 1374 γ to 11 ⁻ 4486. T _{1/2} : from RDM in (³⁰ Si,2p2n γ). 5894 7 (3 ⁻) I L J ^{π} : L=(3) in (α, α'). 5950 7 5 ⁻ I M J ^{π} : L(p,t)=5.	5745 7				Ĩ	1		XREF: 1(5780).
5789.1 3 1 [@] D 5801.3 7 (1) [@] D 5806 7 (0 ⁺) I J ^π : L(p,p')=(0). 5841.7 11 1 [@] D 5844 7 3 ⁻ I M 5861.9 4 (12 ⁺) 35 ps 3 C N WX 5894 7 (3 ⁻) I L J ^π : L=(3) in (α, α'). 5950 7 5 ⁻ I M J ^π : L(p,t)=5.	5784 7	$(3^-, 2^+)$			I	1		XREF: 1(5780).
5789.1 5 1 D 5801.3 7 (1) [@] D 5806 7 (0 ⁺) I J ^{π} : L(p,p')=(0). 5841.7 11 1 [@] D 5844 7 3 ⁻ I M 5861.9 4 (12 ⁺) 35 ps 3 C N WX 5894 7 (3 ⁻) I L J ^{π} : L=3) in (α , α'). 5950 7 5 ⁻ I M J ^{π} : L=(3) in (α , α').	5790 1 2	1@		D				J^{n} : L(p,p')=(3,2).
5001.57 $(1)^{7}$ 1^{7} J^{π} : $L(p,p')=(0)$. 5841.7 11^{9} D 5844.7 3^{-} I M 5861.9 4 (12^{+}) $35 \text{ ps } 3$ C N 5894.7 (12^{+}) $35 \text{ ps } 3$ C N MX 5894.7 (3^{-}) I L J^{π} : L=(3) in (α, α') . 5894.7 (3^{-}) I L J^{π} : L=(3) in (α, α') . 5950.7 5^{-} I M J^{π} : L(p,t)=5.	5789.1 5 5801 3 7	$(1)^{(1)}$		ע				
5841.7 11 1 0 D 5844 7 3 ⁻ I M E(level): doublet in (p,p'). 5861.9 4 (12 ⁺) 35 ps 3 C N J^{π} : L=3 in (p,t). 5861.9 4 (12 ⁺) 35 ps 3 C N WX J ^{π} : stretched E2 740 γ to (10 ⁺) 5122; 1374 γ to 11 ⁻ 4486. 5894 7 (3 ⁻) I L J ^{π} : L=(3) in (α, α'). 5950 7 5 ⁻ I M J ^{π} : L(p,t)=5.	5806 7	(0^+)		D	I			J^{π} : L(p,p')=(0).
5844 7 3^- I M E(level): doublet in (p,p'). 5861.9 4 (12 ⁺) 35 ps 3 C N J^{π} : L=3 in (p,t). 5864 7 (3 ⁻) I L J^{π} : L=(3) in (α, α'). 5950 7 5^- I M J^{π} : L=(2) in (α, α').	5841.7 11	1@		D				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5844 7	3-			I	Μ		E(level): doublet in (p,p') .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5861.9.4	(12^{+})	35 ns. 3	C		N	WX	J [*] : L=3 in (p,t). J ^{π} : stretched E2 740v to (10 ⁺) 5122: 1374v to 11 ⁻ 4486.
5894 7 (3^-) I L J^{π} : L=(3) in (α, α') . 5950 7 5^- I M J^{π} : L(p,t)=5.		()	F	-				$T_{1/2}$: from RDM in (³⁰ Si,2p2n γ).
5950 / 5 I M J [*] : L(p,t)=5.	5894 7	(3 ⁻)			I	L		$J^{\pi}: L=(3) \text{ in } (\alpha, \alpha').$
$509144 = 10^{0}$	5950 7	5 1 @		D	1	M		J^{n} : L(p,t)=5.
5961.44 1 $^{-1}$ D $6100\ 25$ (2 ⁺ .4 ⁺) M J ^{π} : L(2.4) in (p.t).	6100 25	$(2^+, 4^+)$		D		М		J^{π} : L(2.4) in (p.t).
$6125.92\ 20\ 1^{(-)}$	6125.92 20	1(-)@		D				· · _(-, ·) ··· (r , ·).
6184.3 25 (2) [@] D	6184.3 25	(2) [@]		D				
6191.52 20 1 ^{-@} D	6191.52 20	1-@		D				
$6300.2 \ 3 \ 1^{-0}$ D	6300.2 <i>3</i>	1-@		D				
$6329.9 11 (1)^{@}$ D	6329.9 11	(1)		D				
$6362.7 6 (1)^{00} D$	6362.7 6	(1)		D				
6377.6 3 1 ⁻¹⁰ D 6400 0 15 $H = I^{\pi_1} \cdot 1552 + t_2 \cdot (10^+) \cdot 4848$	6377.6 3	1-@		D			W	I^{π} , 1552 to (10 ⁺) 1949
6524 45 20 1 ^{-@} D	6524 45 20	1-@		р			vv	J . 1552 y to (10) 4646.
$6550.3^{\ddagger b}$ 4 (12 ⁻) <0.7 ps C N WX J ^{π} : M1 2064 γ to (11 ⁻) 4487.	$6550.3^{\ddagger b}$ 4	(12^{-})	<0.7 ps	c		N	WX	J^{π} : M1 2064 γ to (11 ⁻) 4487.
$T_{1/2}$: from RDM in (³⁰ Si,2p2n γ).		()	1					$T_{1/2}$: from RDM in (³⁰ Si,2p2n γ).
6566.2 6 1 [@] D	6566.2 6	1@		D				
$6606.4 3 1^{-60}$ D	6606.4 3	1 ^{-@}		D				VT 0100 · 11- 4404
6608.5 <i>I</i> $W = J^{n}: 2122\gamma$ to 11^{-} 4486.	6608.5 11	1(-)					W	J^{n} : 2122 γ to 11 ⁻ 4486.
$0043.0 J$ 1 12^{-1} 12 m 3 C N WY M_2 D 112 22 to (12 ⁻¹) 6550 D 200 22 to (12 ⁺¹) 5962	0043.03	(13-)	$22 m^{2}$	U C		N	ыv	I_{π} , D 112a to (12 ⁻) 6550; D 800a to (12 ⁺) 5862
$T_{1/2}$: from RDM in (³⁰ Si.2n ² n ν).	0001.3 ** 3	(15)	22 ps 3	C		11	WA	$T_{1/2}$; from RDM in (³⁰ Si,2p2ny).
6718.59 (2 ⁻) [@] D	6718.5 9	$(2^{-})^{@}$		D				1/2 $(-) = 1/2$
6761.4 4 $1^{(-)}$ D	6761.4 4	1 ⁽⁻⁾ @		D				

E(level) [†]	J^{π}	T _{1/2}		XREF		Comments
6787.3 4	1-@		D			
6818.1 <i>4</i>	1-@		D			
6883.1 4	1-@		D			
6995.89 20	1-@	0.38 fs 5	D			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
7031.3 3	1-@	0.57 fs 12	D			$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
7069.6 4	1-@		D			
7076.9 12	1@		D			
7134.1 10	(14^{+})				W	J^{π} : E1 472 γ to (13 ⁻) 6662.
7239.7 11	1(-)@		D			
7271.7 5	-@		D			
7279.0 11	$(2)^{@}$		D			
7312.4 ^{‡b} 5	(14 ⁻)	<1.4 ps	С	Ν	WX	J ^{π} : M1 651 γ to (13 ⁻) 6662. T _{1/2} : from RDM in (³⁰ Si,2p2n γ).
7384.3 6	1 [@]		D			,
7394.4 <i>4</i>	1 [@]		D			
7422.5 11			D			
7447.2 16			D			
7469.1 4	1(-)	0.7 fs <i>3</i>	D			$T_{1/2}$: from (p,p' γ).
7486.6 5	1(-)@		D			
7518.4 6	1-@		D			
7573.6 7	1		D			
7604.4 7	(1)		D			
7619.5 9	(1)		D			
7681.1 5	1-@		D			
7711.3 5	1@		D			
7731.7 5	1-@		D			
7782.3 9	1@		D			
7784.0 6	(2)		D			
7787.6 10	(1)		D			
7808.1 11	1 [@]		D			
7831.4 13	0		D			
7837.7 15	(2)		D			
7856.6 5	1-@		D			
7877.6 10	(1)	0.34 fs 20	D			$T_{1/2}$: from DSAM in (p,p' γ).
7881.8 5	1		D			
7894.3 7	1.		D			
7919.4 10	(1)		D			
7931.4 9	1.		D			
7950.4 4	1(+)@	0.70 MeV 5	D	I		J ^π : D 7950γ to 0 ⁺ g.s.; M1 resonance from (p,p'); possible conf=(v g _{7/2})(v g _{9/2}) ⁻¹ (1982Dj04). T _{1/2} : Γ from (p,p').
7963.3 7			D			
8007.0 14	1-@		D			
8042.0 12	1 [@]	0.66 fs 18	D			$T_{1/2}$: from DSAM in (p,p' γ).
8063.4 11	1 ⁽⁻⁾		D			

E(level) [†]	J^{π}	T _{1/2}		X	REF		Comments
8088.1 10	(2) [@]		D				
8096.4 10	1@		D				
8168.4 5	1-@		D				
8211.0 11	1 [@]	0.42 fs 12	D				$T_{1/2}$: from DSAM in (p,p' γ).
8220.8 10	$(1)^{@}$		D				
8221.2 [‡] <i>12</i>	(14)				N	W	J^{π} : D γ to (13 ⁻) 6662.
8229.9 7	1-@		D				
8319.5 6	1@		D				
8355.1 16	1@		D				
8381.7 8	(1) [@]		D				
8387.4 [‡] 6	(15 ⁺)	<1.4 ps			N	WX	J ^{π} : E1 1075 γ to (14 ⁻) 7312. T _{1/2} : from RDM (1994Da15) in (³⁰ Si,2p2n γ).
8422.2 9	(_)@		D				
8486.5 14	1 [@]		D				
8501.0 17	1@		D				
8553.0 <i>13</i> 8594.7 <i>11</i>	1@		D			W	
8606.6 8	(1)		D				
8660.4 <i>3</i>	1-@		D				
8695.2 14	1@		D				
8763.4 5	1@		D				
8774.4 <i>4</i>	1-@		D				
8791.5 8	(1)		D				
8819.8 6	10		D				
8834.3 20	(1)		D				
8902.5 9	1.		D				
8924.0 [‡] 7	(16 ⁺)	<1.4 ps			N	WX	J^{π} : (M1) 537 γ to (15 ⁺) 8387. T _{1/2} : from RDM in (³⁰ Si,2p2n γ).
8926.3 15	(1)		D				
8955.5 6	1 ⁽⁻⁾		D				
9.00×10 ³ 10	(1 ⁺)	1.1 MeV 1		I			J ^π : M1 resonance in (p,p'); possible conf=($\nu g_{7/2}$)($\nu g_{9/2}$) ⁻¹ (1982Dj04). T _{1/2} : Γ from (p,p').
9022.1 8	-		D				
9096.6 6	1-@		D				
9126.5 10	1@		D				
9187.0 8	1@		D				
9206.4 8	1 ⁽⁻⁾ @		D				
9237.4 8	1@		D				
9280.2 23	(2)		D				
9296 <i>3</i>	(2)		D				
9337.6 8	1 ^w		D				IT NO 2005 ((14+) 7124 D 2040 ((14-) 7212
9359.3 10	(15') 1 ⁰		_			W	J [*] : M1 2225 γ to (14 ⁺) /134; D 2048 γ to (14 ⁻) /312.
9360.97	1 ~ (-)@		D				
9418.9 12	()		D				

⁹²Mo Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XREF			Comments
9443.2 8	1 [@]		D				
9481.0 [‡] 8	(17 ⁺)	<1.4 ps		N		WX	J ^{π} : M1 557 γ to (16 ⁺) 8924. T _{1/2} : from RDM in (³⁰ Si,2p2n γ).
9502.8 8	1 [@]		D				
9559.3 <i>13</i>	$(1)^{@}$		D				
9592.3 10	(1 ⁻) [@]		D				
9646.7 <i>13</i>	$(1)^{@}$		D				
9691 <i>3</i>	-		D				
9710.6 11	1 [@]		D				
9827.0 17	1 [@]		D				
9843.0 10	$(1)^{@}$		D				
10020.3 14	(16^{+})					W	J^{π} : M1 661 γ to (15 ⁺) 9359.
10102.9 [‡] 13	(18 ⁺)			N		W	J^{π} : M1 622 γ to (17 ⁺) 9481.
10579.2 17	(17^{+})					W	J^{n} : M1 559 γ to (16 ⁺) 10020.
$11215.5\ 20$ $14\ 13\times10^3\ 20$	(10) 2^+	4.6 MeV 3		т	т	W	J : D 0307 to (17) 10379. I^{π} : L ($\alpha \alpha'$)=2
14.15×10 20	2	4.0 Mic V 5		L	1		$J : L(\alpha, \alpha') = 2.$ $T_{1/2}: \Gamma \text{ from } (\alpha, \alpha').$
							GQR; E=14550, Γ =5.0 MeV 4 in (³ He, ³ He').
16.22×10 ³ 20	0^{+}	4.8 MeV 3		L			$J^{\pi}: L(\alpha, \alpha') = 0.$
							$T_{1/2}$: Γ from (α , α'). GMR.
$16.65 \times 10^3 5$	1-	4.14 MeV			S		GDR; Γ from (γ ,xn). Not a discrete state.

[†] From least-squares fit to adopted $E\gamma$, except as noted, whenever deexciting gammas have been observed; from cross-referenced reactions otherwise.

[‡] Note that E(level) here differs significantly from that deduced in source data set on account of the cumulative effect of apparently systematically low $E\gamma$ values in that data set.

[#] Absence of level in $(n,n'\gamma)$ makes its existence highly questionable; possibly the γ observed in (γ,γ') was an inelastic one.

[@] From resonance fluorescence.

[&] Band(A): π =+, Δ J=2 sequence.

^{*a*} Band(B): π =-, Δ J=2 sequence.

^{*b*} Band(C): sequence based on 12^{-} .

					Adop	oted Levels, Gan	nmas (cont	inued)
						γ (⁹² M	0)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\ddagger}	α^{i}	Comments
1509.51	2+	1509.50 <i>3</i>	100	0.0 0+	E2			B(E2)(W.u.)=8.4 5 E _y : other E _y : 1509.58 <i>13</i> in (α ,2n γ), 1509.47 <i>3</i> in (p,p' γ), 1509.68 <i>15</i> in (³² S,2p2n γ).
2282.61	4+	773.09 3	100	1509.51 2+	E2 ^f			Mult.: from Coulomb excitation; Q from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. B(E2)(W.u.)<24 E _{γ} : weighted average of 773.09 <i>3</i> in $(n, n'\gamma)$, 773.05 <i>12</i> in $(\alpha, 2n\gamma)$, 773.10 <i>8</i> in $(p, p'\gamma)$, 772.97 <i>15</i> in $(^{32}S, 2p2n\gamma)$.
2519.53	0+	1010.02 20	100	1509.51 2+	[E2]			$\delta(Q,O) = -0.12 + 22 - 14$ from $(p,p'\gamma)$. B(E2)(W.u.)<6.4 E _y : unweighted average of 1010.22 7 in $(p,p'\gamma)$ and 1009.82 3 in
2526.96	5-	244.39 9	100	2282.61 4+	(E1(+M2))	<0.05 [@]	0.0098	(i,i,i γ). B(E1)(W.u.)=1.45×10 ⁻⁵ 4; B(M2)(W.u.)<2.9 E _{γ} : unweighted average of 244.30 5 in (n,n' γ) and 244.47 7 in (p,p' γ). Others: 244.5 2 in (α ,2n γ), 243.6 3 in (³⁷ Cl,2p2n γ), 243.7 6 in ε decay. Mult : D(+O) from (n n' α): $\Delta \pi$ -ves from level scheme.
2612.41	6+	85.38 14	13.5 <i>16</i>	2526.96 5-	(E1)		0.200	B(E1)(W.u.)= $4.0 \times 10^{-5} 5$ E _y : weighted average of 85.25 20 in (n,n' γ), 85.5 2 in (α ,2n γ). Others: 84.3 3 in (37 Cl,2p2n γ), 85.0 5 in ε decay, 84.6 from (16 O,6n γ). I _y : unweighted average of 11.9 3 in (α ,2n γ), 15.1 10 in ε decay. Mult : E1 or M1 from RIU : adopted $\Delta \pi$ =ves
		329.82 5	100.0 5	2282.61 4+	E2		0.01761	B(E2)(W.u.)=3.26 11 E _y : weighted average of 329.83 5 in (n,n' γ), 329.76 12 in (α ,2n γ). Others: 329.1 3 in (³⁷ Cl,2p2n γ), 329.3 3 in ε decay, 330.9 4 in (p,p' γ). I _y : from (α ,2n γ). Mult.: O from (α ,2n γ): not M2 from RUL.
2634.2? 2760.52	(1) 8 ⁺	2634.2 ^{hj} 15 148.14 13	100 100	$\begin{array}{ccc} 0.0 & 0^+ \\ 2612.41 & 6^+ \end{array}$	(D) ^g E2		0.291	B(E2)(W.u.)=1.311 22 Other Ey: 148.0 2 in (α ,2ny), 147.3 3 in (³⁷ Cl,2p2ny).
2838.6? 2849.81	(1) 3 ⁻	2838.6 ^{hj} 5 567.3 2	100 3.3 5	$\begin{array}{ccc} 0.0 & 0^+ \\ 2282.61 & 4^+ \end{array}$	(D) ^g [E1]			 Mult.: stretched Q from γ(θ) in (-'Cl,2p2nγ); not M2 from α(exp)=0.24 10 in (α,2nγ). B(E1)(W.u.)=0.00022 +6-9 E. L.: from (n,n'γ). Other Eγ (Iγ): Eγ=567.05 12 (19.0.24)
		1340.26 4	100 5	1509.51 2+	(E1+M2)	-0.015 [@] 10		from (p,γ). B(E1)(W.u.)=0.00049 +10−19; B(M2)(W.u.)=0.3 +4−3 Other δ: −0.09 +5−21 from $\gamma(\theta)$ in (p,p'γ); δ≤0.04 from RUL. Mult.: D+Q from $\gamma(\theta)$ in (p,p'γ) and (n,n'γ); adopted $\Delta\pi$ =yes.

10

$\gamma(^{92}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [†]	δ^{\ddagger}	Comments
2922.6?	(1)	2922.6 ^{hj} 6	100	0.0 0) ⁺ (I	D) ^g		
3006.96	(4,5) ⁻	157.03 11	1.0 5	2849.81 3	3-			
		480.01 8	100 6	2526.96 5	5- D	D+Q	-0.10 [@] 4	E _γ : weighted average of 479.95 <i>11</i> from (n,n'γ), 480.12 <i>14</i> from (p,p'γ) and 480.0 2 from (α ,2nγ). δ: D+O from $\gamma(\theta)$ in (n,n'γ).
3063.63	(4 ⁻)	213.85 11	7.3 7	2849.81 3	3-			
		536.88 19	100 7	2526.96 5	5- D	D+Q	+14 [@] 3	E_{γ} : unweighted average of 537.07 4 in $(p,p'\gamma)$ and 536.69 2 in $(n,n'\gamma)$.
3091.35	2+	1581.83 7	21.6 <i>19</i>	1509.51 2	2+ (E	E2+M1)	+0.63 11	B(M1)(W.u.)=0.026 5; B(E2)(W.u.)=4.3 13 I _y : unweighted average of 19.7 11 in $(n,n'\gamma)$ and 23.5 25 in $(p,p'\gamma)$. Mult., δ : D+Q from $\gamma(\theta)$ in $(p,p'\gamma)$; adopted $\Delta\pi$ =no. Other δ : +2.5 + δ -4 or possibly -0.04 +7-6 from $\gamma(\theta)$ in $(n,n'\gamma)$, neither of which is consistent with the $(p,p'\gamma)$ result.
		3091.30 8	100.0 25	0.0 0)+ E	22		B(E2)(W.u.)=2.5 3 I_{γ} : from (p,p' γ). Mult.: Q to 0 ⁺ from $\gamma(\theta)$ in (p,p' γ); not M2, from RUL.
3368.68	(4 ⁺)	305.06 <i>3</i>	100 5	3063.63 (4	(4 ⁻) D	D+Q	@	Additional information 1. Other E γ : 304.8 2 in (p,p' γ). Mult., δ : D+Q from $\gamma(\theta)$ in (n,n' γ). Adopted $\Delta \pi$ =yes; however, if δ =-0.73 10 as reported in (n,n' γ), B(M2)(W.u.) will exceed RUL, unless T _{1/2} (3369) exceeds 80 ns. Alternatively, 305 γ may be complex in (n,n' γ), possibly making δ unreliable; the 305 γ branch is relatively stronger in (n n' γ) than in (n n' γ)
		361.65 <i>11</i>	27.5 21	3006.96 (4	(4,5) ⁻ D	D+Q	-0.44 15	B(M1)(W.u.)<0.013; B(E2)(W.u.)<29 Other E γ (I γ): 362.3 2 (49 6) in (p,p' γ). Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ); adopted $\Delta\pi$ =no.
		842.1 ^J 2	106 6	2526.96 5	5-			E_{γ},I_{γ} : from (p,p' γ). Placement is considered to be tentative since no evidence for this γ could be found from excit or $\gamma\gamma$ coin in (n n' γ)
		1085.88 <i>11</i>	23.2 21	2282.61 4	ι ⁺ (Ν	M1+E2)		B(M1)(W.u.)<0.00052; B(E2)(W.u.)<0.12 Other E γ (I γ): 1086.4 2 (32 5) in (p,p' γ). Mult.: D+Q from $\gamma(\theta)$ in (p,p' γ) and (n,n' γ); adopted $\Delta\pi$ =no. δ : +0.27 +51-24 from (p,p' γ) but -0.6 2 or possibly +4 +4-2 from $\gamma(\theta)$ in (n n' α)
		1858.5 7	4.8 12	1509.51 2	2 ⁺ (H	E2)		B(E2)(W.u.)<0.0056 Mult.: O from $(n,n'\gamma)$: adopted $\Lambda \pi = no$.
3380.4	(6^{-})	1097.9 ^d	100 ^d	2282.61 4	1 ⁺ N	л2 <mark>∫</mark>		
3384 5?	(0)	$3384 \ 4^{hj} \ 8$	100	0.0 0)+ (I	 D) <mark>8</mark>		
3542.31	2+	2032.80 6	100 4	1509.51 2	2+ E	2+M1	-1.7 +9-26	B(M1)(W.u.)=0.017 <i>16</i> ; B(E2)(W.u.)=12 7 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from RUL.
		3541.96 24	14.1 15	0.0 0)+ E	22		B(E2)(W.u.)=0.15 7 Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$; E1, M1 or E2 from RUL.

11

						Adopted 1	L <mark>evels, G</mark> a	mmas (continued)				
	γ ⁽⁹² Mo) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^π	Mult. [†]	α^{i}	Comments				
3579.81	3-	1052.88 8	100 5	2526.96	5-	(E2)		B(E2)(W.u.)<38 Other E γ : 1053.4 2 from (p,p' γ). Mult.: Q from $\gamma(\theta)$ in (p,p' γ); adopted $\Delta \pi$ =no. $\delta(Q,Q)=-0.12 + 19-32$ from (p,p' γ).				
		1297.22 9	87 5	2282.61	4+	(E1)		B(E1)(W.u.)<0.00029 Other Ey: 1297.6 2 from (p,p' γ). Mult. δ : D, δ (D,O)=0.00 6 from $\gamma(\theta)$ in (n,n' γ): $\Delta \pi$ =ves from level scheme.				
		2070.21 9	≈33	1509.51	2+							
3621.06	(≤4)	2111.53 6	100	1509.51	2+							
3624.13	7^{-}	243.8		3380.4	(6 ⁻)	(M1)	0.0229	E_{γ} ,Mult.: from ⁷⁴ Ge(²⁸ Si,2\alpha 2n\gamma).				
		1097.10 <i>16</i>	100	2526.96	5-	(E2)		Other E γ : 1097.7 2 in (α ,2n γ), 1098 <i>I</i> in (32 S,2p2n γ), 1096.8 <i>3</i> in (37 Cl,2p2n γ).				
								Mult.: yrast cascade γ , mult=Q to 5 ⁻ , from (α ,2n γ), (³² S,2n2p γ).				
3651.8?	(1)	3651.7 ^{hj} 11	100	0.0	0^{+}	(D) <mark>8</mark>						
3688.77	$1^{(-)}, 2, 3$	838.9 2	15.8 <i>15</i>	2849.81	3-			Other I γ : 92 6 from (p,p' γ).				
		2179.24 6	100 4	1509.51	2+	D(+Q)		Other E γ : 2178.48 <i>13</i> from (p,p' γ). δ : -0.02 6 or +2.5 5 if J(3689)=2; +0.35 4 if J(3689)=3 (2010Go15) in (n,n' γ).				
3753.2		385 [#] 1		3368.68	(4^{+})							
		689 [#] 1		3063.63	(4^{-})							
3757.25		1230.28 8	100	2526.96	5-							
3814.58	2,3	234.83 13	91 9	3579.81	3-			Other Iy: 58 9 from 2000Ga30 in $(n,n'\gamma)$.				
		750.8 ^j		3063.63	(4^{-})			E_{γ} : from $(p,p'\gamma)$.				
		807.7 ^j	36.1 12	3006.96	(4,5) ⁻			E _{γ} : tentative placement from (p,p' γ). E γ =807.7 3, branching=36.1 12 from (n,n' γ) if correctly placed.				
		964.59 11	94 9	2849.81	3-	D(+Q)		Other Iy: 82 5 in $(p, p'\gamma)$; 119 18 (2000Ga30) in $(n, n'\gamma)$. Mult. δ : $\delta(D, Q)=0.00$ 12 or -6 +2-15 if J(3815)=2; from $(n, n'\gamma)$.				
		2305.20 12	100 6	1509.51	2+	D(+Q)		Other E γ : 2304.3 3 in (p,p' γ). Mult., δ : δ (D,Q)=-0.01 +15-11 or +2.3 +9-7 if J(3815)=2; from $\gamma(\theta)$ in (n,n' γ).				
3841.87	0^{+}	2332.33 11	100	1509.51	2^{+}	[E2]		B(E2)(W.u.) < 1.6				
3871 5	(<4)	2362# 1	100	1509 51	2+							
3876.62	4+	1593.76 13	33.3	2282.61	$\frac{1}{4^{+}}$			$I(1594\gamma):I(2367\gamma)=61$ //:100 // in (p.p' γ).				
2070.02		2367.22 10	100 4	1509.51	2+	(E2)		Mult.: O from $\gamma(\theta)$ in $(n,n'\gamma)$: $\Delta \pi = no$ from level scheme.				
3926.36	2+	1643.9 5	13.6 13	2282.61	4+	()						
		2416.86 12	54.8 24	1509.51	2+	D+Q		Other E γ : 2416.9 5 in (γ , γ'), 2415.5 5 in (p,p' γ). Other I γ : 49 24 in (γ , γ') for uncertain γ , 54 8 from (p,p' γ).				
		3926.22 13	100 11	0.0	0^{+}	(E2)		Mult., δ : from $\gamma(\theta)$ in (n,n' γ); δ =+0.30 +17-10 or +1.15 26. B(E2)(W.u.)=1.38 24				

12

From ENSDF

					Adopt	ted Levels, Gami	mas (continued)
						γ ⁽⁹² Mo) (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\ddagger}	Comments
3944.92	1	3944.83 <i>13</i>	100	0.0 0+	D		 Other Eγ: 3924.9 5 in (p,p'γ), 3925.7 2 in (γ,γ'). Mult.: Q from (γ,γ'); not M2 from RUL. Other Eγ: 3943.96 <i>17</i> in (p,p'γ), 3944.1 3 in (γ,γ'). I_γ: % photon branching=78 28 from (γ,γ'). However, no other γ is known to deexcite this level. Mult.: from (γ,γ') and (n,n'γ).
3953.2?		1340.8 ^{<i>j</i>} 4	100	2612.41 6+			Placement shown as uncertain because γ seen by 2000Ga30 was not reported by 2010Go15 in $(n,n'\gamma)$.
3963.19	4+	594.9 <i>j</i> 899.3 <i>5</i>	100 8	3368.68 (4 ⁺) 3063.63 (4 ⁻)			E _{γ} : from (p,p' γ). I _{γ} : from (p,p' γ). Other E γ : 898.0 2 in (p,p' γ).
		1113.2 <i>3</i> 2453.77 <i>20</i>	55 6 49 6	2849.81 3 ⁻ 1509.51 2 ⁺			$I_{\gamma}: \text{ from } (\mathbf{p}, \mathbf{p}' \gamma).$ $I_{\gamma}: \text{ from } (\mathbf{p}, \mathbf{p}' \gamma).$
3964.3? 4019.31	(2)	3964.2 ^{<i>hj</i>} 13 1492.33 9	100 100	$\begin{array}{ccc} 0.0 & 0^+ \\ 2526.96 & 5^- \end{array}$	(Q) ^g		
4115.81	3 ⁽⁻⁾ ,4	747.7 9	19 5	3368.68 (4+)		Ø	
		1266.06 <i>13</i> 1589.00 <i>19</i>	100 8 23 4	2849.81 3 ⁻ 2526.96 5 ⁻	D+Q	+0.07 4	
	<i>(</i>)	1832.99 15	45 5	2282.61 4+	D(+Q)	+0.4 [@] 5	
4148.08	1(-)	1864.86 <i>J</i> 23 2638.53 <i>16</i> 4148.0 <i>4</i>	67 <i>14</i> 80 8 100 <i>14</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D (E1)		Mult.: D from $(n,n'\gamma)$; $\Delta \pi = (yes)$ from (γ,γ') .
4150.36	$4^{(+)}, 5^{(-)}$	1300.91 14	13 <i>3</i>	2849.81 3-		e	
		1623.15 17	30 4	2526.96 5-	D+Q	$-0.9^{\textcircled{0}}+4-8$	
4159.47	5-	1867.58 <i>12</i> 1309.7 8	100 6 16 5	2282.61 4 ⁺ 2849.81 3 ⁻	D(+Q)	-0.08 12	
4187.20	(6+)	1632.49 <i>14</i> 1122.9 <i>9</i> 1574.6 6	100 9 27 <i>11</i> 24 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D(+Q)	+0.3 [@] +4-3	Other I γ : 89 13 from 2000Ga30 in (n,n' γ).
		1904.61 18	100 7	2282.61 4+	Q		
4241.29	5,6,7	1628.87 14	100	2612.41 6+	D(+Q)		
4251.0	9	626.8° 2	100	3624.13 7	E2		Other Ey: 628.25 11 from 2000Ga30 in (n,n' γ), but this γ was not confirmed by 2010Go15 in that reaction. Mult : O yrast decay γ ray to 7 ⁻ from (α 2n γ) (³² S 2n2n γ). Electric
							from positive IPDCO in $({}^{28}Si,2\alpha 2n\gamma)$.
4280.73		912.04 <i>12</i> 1998.3 <i>5</i>	100 8 15 5	$3368.68 (4^+) 2282.61 4^+$			
4307.44	2,3	1215.8 7	27 8	3091.35 2+			

From ENSDF

					Adopted	l Levels, Gammas	s (continu	ed)
						γ ⁽⁹² Mo) (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π} Mult. [†]	δ^{\ddagger}	α^{i}	Comments
4307.44	2,3	1457.57 13	≈96	2849.81 3-	- D(+Q)			δ : -0.02 +9-11 or -5 +2-5 if J(4308)=2; +0.14 5 if J(4308)=4 (2010Go15) from (n,n' γ).
		2797.94 13	100 12	1509.51 24	+ D(+Q)			δ : +0.1 +4-2 or +1.7 +11-9 if J(4308)=2 (2010Go15) from (n,n' γ).
4315.2	5-	1703.3 <i>4</i> 1787.3 <i>5</i>	100 8 86 9	2612.41 6 ⁴ 2526.96 5 ⁻	-			
4328.5?		1568 ^{#j} 1	100	2760.52 8	F			
4345.78		1339.1 5		3006.96 (4	,5) ⁻			Reported in $(n,n'\gamma)$ by 2000Ga30, but not by 2010Go15 (possibly unresolved from strong 1340 γ there).
		2063.1 2	100 10	2282.61 47	- 	a a () a t		
4429.51	3	15/9.27 22	95 <i>11</i> 100 <i>11</i>	$2849.81 3^{-1}$	D(+Q)	+0.3 +1-4		Other 1 γ : 80 12 from 2000Ga30 in (n,n' γ).
		2919.84 23	42.9	$1509.51 2^{+1}$	⊢ P			$0. \pm 0.25$ 14 of $\pm 8 \pm 70^{-4}$ from (ii,ii γ).
4436.05	3,4,5	1371.91 24	47 12	3063.63 (4	-)			Other Iy: 28.9 22 from 2000Ga30 in $(n,n'\gamma)$.
		2153.59 14	100 10	2282.61 4	⊢ D+Q			
4436.42		1429.45 14	100	3006.96 (4	,5)-			
4455.01	(3,4,5)	1391.31 16	100 18	3063.63 (4) 			O_{1}^{1} O_{2}^{1} O_{2
1177 80	2(-) A(+) 5	21/2.50 23	10 8	2282.61 4	-			Other 1 γ : 59 9 from 2000Ga30 in (n,n' γ).
4477.00	30,40,5	2195 15 17	19.8	2320.90^{-5} 2282.61 4 ⁴	+ D+O			Mult : $\gamma(\theta)$ in $(n n'\gamma)$ excludes pure O or pure D $\Delta I=0$
		21/0.10 1/	100 /	2202.01	DIQ			Other Ey: 2195.54 14 from 2000Ga30 in $(n,n'\gamma)$.
4483.36		1956.37 <i>21</i>	100	2526.96 5	-			
4486.0	11-	234.9 ^b 2	100	4251.0 9-	- E2 ^{<i>f</i>}		0.0562	B(E2)(W.u.)=3.47 8
4493.92	2+	2984.29 17	100 10	1509.51 24	⊦ D+Q			Other E: 2983.6 6 in (γ, γ') . δ : +0.23 +24-15 or +1.3 +5-6 (2010Go15) from $(n,n'\gamma)$.
		4494.7 <mark>h</mark> 6	≤43	$0.0 0^{+}$	⊢ (E2) ^g			Mult.: Q from $\gamma(\theta)$ in (γ, γ') ; $\Delta \pi$ =no from level scheme.
4509.6	4+	3000	100	1509.51 2	+			E_{γ} : from $(\alpha, \alpha' \gamma)$.
4544.40	(- 1)	2261.76 16	100	2282.61 4	F L			
4575.5	(≤ 4) $2^{(+)}$	3003.75 23	02 12	1509.51 2	F			$\delta(D, Q) = 0.0 + 6 + 12 \text{ or } 1/8 = +0.2 + 16 - 7 \text{ from } (n n'a)$
4389.04	200	4589 7 7	92 13	$1309.31 \ 2$	+ O			$O(D,Q)=0.0 + 0 - 12$ of $1/0 = +0.5 + 10 - 7$ from (ii, ii γ). Other Fy: 4590.8.9 in $(\gamma \gamma')$
4630.65	$(2^+, 3, 4^+)$	2348.6 11	13 5	2282.61 4 ⁴	+ ~			
		3121.07 19	100 16	1509.51 24	F			
4633.73	(1 ⁻)	3124.7 ^h 8	11 9	1509.51 2*	+ (E1) ^g			B(E1)(W.u.)= $2.9 \times 10^{-4} 25$ E _{γ} : from (γ , γ'). E γ =3121.07 <i>19</i> from (n,n' γ) is too low for this placement, suggesting the presence of a second level near 4630 keV (as adopted here). I _{γ} : from (γ , γ'). Mult.: (D) from (γ , γ'); $\Delta \pi$ =(ves) from level scheme.
		4633.6 ^h 1	100 9	0.0 0	+ (E1) ^g			B(E1)(W.u.)=0.00081 18

From ENSDF

					Adop	ted Levels	s, Gammas (continued)
						γ (⁹² M	o) (continued)
E _i (level)	${ m J}^{\pi}_i$	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
							Mult.: D, $\Delta \pi =$ (yes) from (γ, γ') .
1650 7	(< 1)	1002.0 6	20.14	2040.01	2-		Other E γ : 4634.1 8 in (n,n' γ).
4032.7	(≤4)	3143 1 3	29 14	2849.81	3 2+		
4663.2	1	$4663.1^{h}6$	100 10	0.0	$\frac{2}{0^{+}}$	D^g	
4685.1	(6 ⁻)	1677.5 13	86 21	3006.96	$(4,5)^{-}$	D	
	` ,	2158.1 <i>3</i>	100 20	2526.96	5-	D+Q	
4702.73	(≤4)	1612.5 11	31 13	3091.35	2+		
1725.0	4+	3193.11 24	100 14	1509.51	2^+		
4725.2	4	1001.4 3	≤291 100-16	3063.63	(4) 4 ⁺		
1731 39		$1365.6 \frac{1}{3}$	100 10	2262.01	(4^+)		
4781.51	$(2.3^+.4^+)$	3271.94 20	100	1509.51	(4) 2^+		
4848.3	(10^+)	2087.8 ^d	100^{d}	2760.52	8+	O^{f}	
4893.3	4+	3383.7 3	100	1509.51	2^{+}	×	
4917.9	7+	2157.0 ^C 6	100 ^C 8	2760.52	8+		
		2305.8 [°] 6	77 ^C 7	2612.41	6+		
4936.1	(1)	4936.0 ^h 6	100	0.0	0^{+}	(D) <mark>8</mark>	
4944.7	(1)	4944.6 ^h 10	100	0.0	0^{+}	(D) <mark>8</mark>	
4948.7	(3,4 ⁺)	1940.8 6	100 21	3006.96	(4,5) ⁻		
		2666.1 5	41 18	2282.61	4 ⁺		
4070 7	$(1, 2^{+})$	3439.8 5	22.6	1509.51	2+	(D)	E , weighted every of $2461.2.7$ in $(n n'a)$ and $2460.0.7$ in $(n n')$
4970.7	(1,2)	5401.1 5	100	1509.51	2	(D)	E_{γ} . Weighted average of 5401.5 / in (i,ii γ) and 5400.9 / in (γ, γ). Mult.: from (γ, γ').
5003.6	$(2)^{+}$	3493.78 <mark>/</mark> 24	45 33	1509.51	2^{+}	(M1)	B(M1)(Wn) = 0.007 + 8 - 7
000010	(-)	0.0000 20	10 00	1007101	-	(1111)	E_{γ} : weighted average of 3494.1 4 in (γ, γ') and 3493.6 3 in $(n, n'\gamma)$.
							I_{γ} : from (γ, γ') .
		1					Mult.: (D) in (γ, γ') ; $\Delta \pi$ =no from level scheme.
		5003.5 ⁿ 4	100 33	0.0	0^{+}	(E2) ^g	B(E2)(W.u.)=0.23 19
							I_{γ} : from (γ, γ') .
5076.6	4 ⁺	2703 5 18	17 10	2282.61	<i>1</i> +		Numeric: (Q), $\Delta \pi = \text{no from } (\gamma, \gamma')$.
5070.0	7	3567.0.3	≈100	1509.51	$\frac{1}{2^{+}}$		
5121.7	(10^{+})	2361.4 ^{<i>a</i>} 3	100	2760.52	8+	(E2)	B(E2)(W.u.)>0.45
	. /					. /	Mult.: stretched Q, from $\gamma(\theta)$ in (³⁷ Cl,2p2n γ).
5151.3	$(10^{-}, 11^{-}, 12^{-})$	665.3 ^b 2	100	4486.0	11-	(M1)	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
5283.0	(1)	5282.8 ^h 21	100	0.0	0^{+}	(D) <mark>8</mark>	
5312.6		2552 [#] 1	100	2760.52	8+		

From ENSDF

⁹²₄₂Mo₅₀-15

γ (⁹²Mo) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	Comments
5331.7	(1)	5331.5 ^h 9	100	0.0	0^{+}	$(D)^{g}$	
5451.6	(1)	5451.4 ^h 9	100	0.0	0^{+}	$(D)^{g}$	
5462.9	$(7,8)^+$	2702.4 [°] 6	100 [°] 16	2760.52	8+	(2)	
		2850.3 [°] 6	91 [°] 16	2612.41	6+		
5527.4	(1)	5527.2 ^h 5	100	0.0	0^{+}	(D) ^g	
5611.2		762.9 ^d	100 ^d	4848.3	(10^{+})		
5623.8	(1)	5623.6 ^h 10	100	0.0	0^{+}	(D) <mark>8</mark>	
5629.9	1	5629.7 <mark>h</mark> 19	100	0.0	0^{+}	D ^g	
5703.4	1	5703.2 ^h 4	100	0.0	0^{+}	D <mark>8</mark>	
5789.1	1	5788.9 ^h 3	100	0.0	0^{+}	D <mark>8</mark>	
5801.3	(1)	5801.1 ^h 7	100	0.0	0^{+}	(D) <mark>8</mark>	
5841.7	1	5841.5 ^h 11	100	0.0	0^{+}	D <mark>8</mark>	
5861.9	(12^{+})	740.3 2	100 14	5121.7	(10^{+})	E2	B(E2)(W.u.)=2.25
							E_{γ} : from $(\alpha, 2n\gamma)$.
							I_{γ} : from (¹⁰ U, $\delta n\gamma$).
		1074 76	26 14	4496.0	11-	$r_1 f$	Mult.: stretched Q from $\gamma(\theta)$ in ("Ci,2p2n γ); not M2 from KUL.
5001 4	1	$13/4.7^{\circ}$	36° 14	4486.0	11 2+	EI ^J	$B(E1)(W.u.)=1.0\times10^{\circ}4$
5981.4	1	$44/3.2^{h}$ 11	100	1509.51	2 · 0+	(D) ⁶	
(105.00	1(-)	5981.2^{h} 4	100	0.0	0	D8	
6125.92	I()	6125.7" 2	100	0.0	0 '	(E1) ⁸	$\alpha(\text{IPF})=0.00232.4$ Mult: D. $\Delta\pi=(\text{vec})$ in (α, α')
6184 3	(2)	6184 1 <mark>h</mark> 25	100	0.0	0+	(Ω)	Mult.: $D, \Delta n = (yes) m (y, y).$
6101.52	(2)	$6101.3^{h}.2$	100	0.0	0+	$(Q)^{\circ}$	$\alpha(\text{IDE}) = 0.00234.4$
6300.2	1	$6300 0^{h} 3$	100	0.0	0+	$E1^{\circ}$	$\alpha(\text{IDE}) = 0.00236.4$
6320.0	1 (1)	6320.7^{h} 11	100	0.0	0+	(D)	u(III)=0.00250 7
6262 7	(1) (1)	$6363 5^{h} 6$	100	0.0	0+	$(D)^{g}$	
6277.6	(1)	$\frac{0302.3}{10}$	100	1500.51	0 2+	$(D)^{g}$	
0377.0	1	4000.0 - 10	100	1309.31	2 0+	(D) ⁶	~(IDE)_0 00229 <i>4</i>
6400.0		1551 cd	100 100 d	0.0	(10^{\pm})	E10	a(1PP)=0.00258 4
0400.0 (504.45	1-	1551.0^{-1}	100	4848.5	(10^{-})	E19	(IDE) 0.00242 4
0324.43	1	0324.2^{-2}	100	0.0	U · 11-	E_{10}	$u(\Pi \Gamma \Gamma) = 0.00242.4$
0550.3	(12)	2064.1" 3	100	4486.0	11	MII ^J	B(M1)(W.U.)>0.0030 Ey-2085 4 20 in (9.202) is presumed to be erroneous. Other Ey: 2064.5 in
							$(2^{28}\text{Si} 2\alpha^2\text{nv})$
6566.2	1	6565.9 ^h 6	100	0.0	0^+	D ^g	

16

$\gamma(^{92}Mo)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	α ^{<i>i</i>}	Comments
6606.4	1-	6606.1 ^h 3	100	0.0	0^{+}	E1 ^g		α (IPF)=0.00244 4
6608.5		2122.4 ^d	100 ^d	4486.0	11-			
6645.6	1(-)	6645.3 ^h 5	100	0.0	0^{+}	(E1) ^g		α (IPF)=0.00244 4
		,						Mult.: D, $\Delta \pi = (\text{yes})$ in (γ, γ') .
6661.5	(13 ⁻)	111.2 ^b 2	100 9	6550.3	(12 ⁻)	(M1+E2)	0.5 4	Other Ey: 110.4 from (${}^{16}\text{O},6n\gamma$), 110.7 from (${}^{28}\text{Si},2\alpha 2n\gamma$).
								I_{γ} : from (²⁰ S1,2 α ² n γ). Mult : D from α ⁽⁰⁾ and anisotropy in ⁽³⁷ Cl 2n ² n γ), suthers assume A I=1
								transitions are M1(+E2).
		800.7 ^d	9 d 4	5861.9	(12^{+})	D^{f}		Other Iy: 118 27 from $({}^{16}O,6n\gamma)$.
6718.5	(2^{-})	6718.2 ^h 9	100	0.0	0+	(M2) ^g		α (IPF)=0.001520 22
								Mult.: $\Delta \pi = (\text{yes})$ for (Q) transition in (γ, γ') .
6761.4	1(-)	6761.1 ^{h} 4	100	0.0	0^{+}	(E1) ^g		α(IPF)=0.00246 4
(=0= a		c-o-oh	100		0.±	T (0		Mult.: D, $\Delta \pi = (\text{yes}) \text{ in } (\gamma, \gamma').$
6787.3	1-	$6/8/.0^{h}$ 4	100	0.0	0+	El ⁸		α (IPF)=0.00247/4
6818.1	1-	6817.8^{h} 4	100	0.0	0+ 0+			α (IPF)=0.00248 4
6883.1	1	6882.8^{n} 4	100	0.0	0			α (IPF)=0.00249 4
6995.89	1	5487.049 10	69	1509.51	21	(EI) ⁸		B(E1)(W.u.)=0.0003+3-3 L : from (x x')
								Mult.: (D) from (γ, γ') ; $\Delta \pi$ =yes from level scheme.
		6995.6 ^h 2	100 9	0.0	0^{+}	E1 ^{<i>g</i>}		α (IPF)=0.00252 4
								B(E1)(W.u.)=0.0024 5
7021.2	1-	5510 01 17	0.11	1500 51	2+	(E 1)		I_{γ} : from (γ, γ') .
/031.3	1	5519.8 ^J 1/	8 11	1509.51	21	(EI)		B(E1)(W.u.)=0.0003 + 4 - 3 L. F. : from (2/2)
								Mult.: (D) from (γ, γ') ; $\Delta \pi$ =yes from level scheme.
		7031.0 ^h 3	100 11	0.0	0^{+}	E1 <mark>8</mark>		α (IPF)=0.00253 4
								B(E1)(W.u.)=0.0016 5
7 0(0)(1-	Taka ah	100	0.0	0.±	D 1 0		I_{γ} : from (γ, γ') .
7069.6	1	$7069.3^{h} 4$	100	0.0	0'	EI ⁸		$\alpha(\text{IPF})=0.00254\ 4$
/0/6.9	1	/0/6.6" 12	100 100	0.0	0'	D^{8}		
/134.1	(14')	$4/1.9^{a}$	100	6661.5	(13)			
1239.1	1、 ′	1239.4" 11	100	0.0	0.	(E1)°		$\alpha(\text{Irr})=0.00257.4$ Mult.: D. $\Delta\pi$ =(ves) in (γ . γ').
7271.7	-	7271.4 5	100	0.0	0^{+}			From (γ, γ') ; $\Delta \pi$ =yes.
7279.0	(2)	7278.7 <mark>h</mark> 11	100	0.0	0^{+}	(Q) <mark>8</mark>		
7312.4	(14-)	650.9 ^b 2	100	6661.5	(13 ⁻)	$M1^{f}$		B(M1)(W.u.)>0.057
7384.3	1	7384.0 ^h 6	100	0.0	0^+	D ^g		

17

 $^{92}_{42}\mathrm{Mo}_{50}$ -17

From ENSDF

$\gamma(^{92}Mo)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [†]	Comments
7394.4	1	7394.1 ^h 4	100	0.0 0+	D ^g	
7422.5	-	7422.2 11	100	0.0 0+	_	E_{γ} : from (γ, γ') .
7447.2		7446.9 16	100	$0.0 0^+$		E_{γ} : from (γ, γ') .
7469.1	$1^{(-)}$	4950.7 ^{hj} 14	52 24	2519.53 0+	(E1) ^g	B(E1)(W.u.)=0.0013 9
		1				Mult.: (D) from (γ, γ') ; $\Delta \pi = (\text{yes})$ from level scheme.
		7468.8 ⁿ 4	100 24	$0.0 0^+$	(E1) ^g	$\alpha(\text{IPF}) = 0.00261 \ 4$
						B(E1)(W.u.)=0.00074 Mult: D. $A = (uos) from (uos')$
71966	1(-)	7106 2h 5	100	0.0 0+	(E1) ⁸	$ \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} +$
/480.0	1. ,	7480.5 5	100	0.0 0	(E1) ⁰	$\alpha(\text{IPP})=0.00201.4$ Mult : D $\Delta\pi=(\text{ves})$ in $(\gamma \gamma')$
7518.4	1-	7518.1 <mark>h</mark> 6	100	$0.0 0^+$	E1 <mark>8</mark>	$\alpha(\text{IPF}) = 0.00262.4$
7573.6	1	7573.3^{h} 7	100	$0.0 0^+$	D^{g}	
7604.4	(1)	7604.1^{h} 7	100	$0.0 0^+$	(D) <mark>8</mark>	
7619.5	(1)	$7619.2^{h}9$	100	$0.0 0^+$	$(D)^{g}$	
7681.1	1-	7680.8^{h} 5	100	$0.0 0^+$	E1 ⁸	α (IPF)=0.00265 4
7711.3	1	$7711.0^{h}.5$	100	0.0 0+	D^{g}	
7731.7	1-	$7731.4^{h}5$	100	$0.0 0^+$	E18	$\alpha(\text{IPF}) = 0.00266.4$
7782.3	1	7781.9 ^h 9	100	$0.0 0^+$	D^{g}	
7784.0	(2)	7783.6^{h} 6	100	$0.0 0^+$	$(0)^{g}$	
7787.6	(1)	7787.2^{h} 10	100	$0.0 0^+$	(\mathbf{Q})	
7808.1	1	7807.7 ^h 11	100	$0.0 0^+$	D^{g}	
7831.4		7831.0 13	100	0.0 0+		E_{γ} : from (γ, γ') .
7837.7	(2)	7837.3 ^h 15	100	0.0 0+	(Q) <mark>8</mark>	
7856.6	1-	7856.2 ^h 5	100	0.0 0+	E1 <mark>8</mark>	α (IPF)=0.00269 4
7877.6	(1)	4954.2 ^{hj} 12	100 14	2922.6? (1)	(D) ^g	I_{γ} : from (γ, γ') .
		7877.2 ^h 10	43 14	$0.0 0^+$	(D) ^g	I_{γ} : from (γ, γ') .
7881.8	1	7881.4 ^h 5	100	0.0 0+	D ^g	
7894.3	1	7893.9 ^h 7	100	0.0 0+	D ^g	
7919.4	(1)	7919.0 ^h 10	100	$0.0 0^+$	(D) ^g	
7931.4	1	7931.0 ^h 9	100	$0.0 0^+$	D ^g	
7950.4	$1^{(+)}$	7950.0 ^h 4	100	$0.0 0^+$	(M1) ^g	Mult.: D, $\Delta \pi = (no)$ in (γ, γ') .
7963.3		7962.9 7	100	0.0 0+		E_{γ} : from (γ, γ') .
8007.0	1-	8006.6 ^h 14	100	0.0 0+	E1 ^g	
8042.0	1	6532.2 ^h J 8	33 19	1509.51 2+	D ^g	I_{γ} : from (γ, γ') .
		8041.6 ^{<i>h</i>} 12	100 19	$0.0 0^+$	D ^g	I_{γ} : from (γ, γ') .

18

⁹²₄₂Mo₅₀-18

$\gamma(^{92}Mo)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
8063.4	1(-)	8063.0 ^h 11	100	0.0	0+	(E1) ^g	Mult.: D, $\Delta \pi = (\text{yes})$ in (γ, γ') .
8088.1	(2)	8087.7 ^h 10	100	0.0	0^{+}	(Q) ^g	
8096.4	1	8096.0 <mark>h</mark> 10	100	0.0	0^{+}	D ^g	
8168.4	1-	8168.0 ^h 5	100	0.0	0^{+}	E1 ^g	
8211.0	1	6701.2 ^{hj} 15	37 18	1509.51	2^{+}	(D) <mark>8</mark>	I_{γ} : from (γ, γ') .
		8210.6 ^h 11	100 18	0.0	0^{+}	D ^g	I_{γ} : from (γ, γ') .
8220.8	(1)	8220.4 ^h 10	100	0.0	0^{+}	(D) <mark>8</mark>	
8221.2	(14)	1559.7 <mark>a</mark>	100	6661.5	(13 ⁻)	D&	
8229.9	1-	8229.5 ^h 7	100	0.0	0^+	E1 ^g	
8319.5	1	8319.1 ^h 6	100	0.0	0^+	D ^g	
8355.1	1	8354.7 <mark>h</mark> 16	100	0.0	0^+	D ^g	
8381.7	(1)	8381.3 ^h 8	100	0.0	0^{+}	(D) <mark>8</mark>	
8387.4	(15 ⁺)	1075.0 ^a 3	100	7312.4	(14 ⁻)	$E1^{f}$	B(E1)(W.u.)>0.00019
8422.2	(_)	8421.8 9	100	0.0	0^{+}		From (γ, γ') ; $\Delta \pi = (\text{yes})$.
8486.5	1	8486.1 ^{<i>h</i>} 14	100	0.0	0^{+}	D ^g	
8501.0	1	8500.6 ⁿ 17	100	0.0	0^{+}	D ⁸	
8553.0	1	8552.6 ⁿ 13	100	0.0	0^{+}	D ^g	
8594.7		1933.2 ^{<i>a</i>}	100 ^{<i>a</i>}	6661.5	(13 ⁻)		
8606.6	(1)	8606.2 ⁿ 8	100	0.0	0^{+}	(D) ^g	
8660.4	1-	8660.0 ⁿ 3	100	0.0	0^{+}	E1 ^g	
8695.2	1	8694.8 ⁿ 14	100	0.0	0^{+}	Dg	
8763.4	1	8763.0 ⁿ 5	100	0.0	0^{+}	D ^g	
8774.4	1-	8774.0 ⁿ 4	100	0.0	0^{+}	E1 ^g	
8791.5	(1)	8791.0 ⁿ 8	100	0.0	0^{+}	(D) ^g	
8819.8	1	8819.3 ⁿ 6	100	0.0	0^{+}	Dg	
8834.3	(1)	8833.8 ⁿ 20	100	0.0	0^{+}	(D) ⁸	
8902.5	1	8902.0 ⁿ 9	100	0.0	0^{+}	D ⁸	
8924.0	(16^{+})	536.6 ^{<i>a</i>} 3	100	8387.4	(15^{+})	(M1)	B(M1)(W.u.)>0.10
8926.3	(1)	8925.8 ⁿ 15	100	0.0	0^{+}	(D) ^g	
8955.5	1(-)	8955.0 ⁿ 6	100	0.0	0^+	(E1) ^g	Mult.: D, $\Delta \pi = (yes)$ in (γ, γ') .
9022.1	1-	9021.6δ	100	0.0	0' 0+	F19	E_{γ} : from (γ, γ) .
9096.6	1	$9096.1^{n} 6$	100	0.0	0'	EI ⁸	
9126.5	1	9126.0" 10	100	0.0	0^+	D8	

19

⁹²₄₂Mo₅₀-19

From ENSDF

⁹²₄₂Mo₅₀-19

$\gamma(^{92}\text{Mo})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$E_f J_f^{\pi}$	Mult. [†]	Comments
9187.0	1	9186.5 ^h 8	100	$0.0 \ 0^+$	D ^g	
9206.4	$1^{(-)}$	9205.9 ^h 8	100	$0.0 \ 0^+$	(E1) ^g	Mult.: D, $\Delta \pi = (\text{yes})$ in (γ, γ') .
9237.4	1	9236.9 <mark>h</mark> 8	100	0.0 0+	D <mark>8</mark>	
9280.2	(2)	9279.7 <mark>h</mark> 23	100	$0.0 \ 0^+$	(Q) <mark>8</mark>	
9296	(2)	9295 ^h 3	100	$0.0 \ 0^+$	(Q) <mark>8</mark>	
9337.6	1	9337.1 ^h 8	100	$0.0 \ 0^+$	D <mark>8</mark>	
9359.3	(15^{+})	2047.6 ^d	100 d 10	7312.4 (14-)	D^{f}	
		2224.5 <mark>d</mark>	53 <mark>d</mark> 19	7134.1 (14+)	$M1^{f}$	
9360.9	1	9360.4 ^h 7	100	$0.0 \ 0^+$	D <mark>8</mark>	
9418.9	(_)	9418.4 12	100	$0.0 \ 0^+$		E γ from (γ , γ'); $\Delta \pi$ =(yes) in (γ , γ').
9443.2	1	9442.7 <mark>h</mark> 8	100	$0.0 \ 0^+$	D ^g	
9481.0	(17^{+})	557.0 ^a 3	100	8924.0 (16 ⁺)	M1 ^{<i>f</i>}	
9502.8	1	9502.3 ^h 8	100	$0.0 \ 0^+$	D <mark>8</mark>	
9559.3	(1)	9558.8 ^h 13	100	$0.0 \ 0^+$	(D) <mark>8</mark>	
9592.3	(1^{-})	9591.8 ^h 10	100	$0.0 \ 0^+$	(E1) ^g	
9646.7	(1)	9646.2 ^h 13	100	$0.0 \ 0^+$	(D) <mark>8</mark>	
9691		9690 <i>3</i>	100	$0.0 \ 0^+$		$E\gamma$ from (γ, γ') .
9710.6	1	9710.0 ^h 11	100	$0.0 \ 0^+$	D <mark>8</mark>	
9827.0	1	9826.4 ^h 17	100	$0.0 \ 0^+$	D <mark>8</mark>	
9843.0	(1)	9842.4 ^h 10	100	$0.0 \ 0^+$	(D) <mark>8</mark>	
10020.3	(16^{+})	660.7 ^d	100 ^d	9359.3 (15 ⁺)	$M1^{f}$	
10102.9	(18^{+})	621.9 ^d	100 ^d	9481.0 (17 ⁺)	M1 ^{<i>f</i>}	
10579.2	(17^{+})	559.2 ^d	100 ^d	10020.3 (16 ⁺)	M1 ^{<i>f</i>}	
11215.5	(18+)	636.3 ^d	100 d	10579.2 (17+)	D^{f}	

[†] From $(n,n'\gamma)$, except as noted. Note, however, that stated I γ from 2000Ga30 may be subject to an additional uncertainty of as much as 15% due to angular distribution effects and, in this evaluation, this has been combined in quadrature with the statistical uncertainty in those data. The $I_{\gamma}(125^{\circ})$ data of 2010Go15 should not have been significantly influenced by such effects.

[‡] From $\gamma(\theta)$ in (p,p' γ), except as noted. [#] From $(\alpha, 2n\gamma)$. ΔE_{γ} not stated by authors; uncertainty assigned by evaluator.

[@] From $\gamma(\theta)$ in $(n,n'\gamma)$.

& D or (D) from $\gamma(\theta)$ in (³⁷Cl,2p2n γ), (³⁰Si,2p2n γ), (¹⁶O,4n γ); $\Delta J=1$ transitions assumed by 1992Si03 to be M1(+E2).

^{*a*} From (37 Cl,2p2n γ); note that E γ values appear to be systematically low in this study.

$\gamma(^{92}\text{Mo})$ (continued)

^b From $(\alpha, 2n\gamma)$. ^c From ⁹²Tc ε decay. ^d From ⁷⁴Ge(²⁸Si, 2\alpha 2n\gamma).

^{*e*} From ($^{16}O,6n\gamma$).

^f From DCO ratios and γ asymmetry parameters from polarization measurements in ⁷⁴Ge(²⁸Si,2 α 2n γ).

^g From (γ, γ') , $(\text{pol } \gamma, \gamma')$. $\Delta \pi$ (if given) is based on comparison between polarized and unpolarized photon data; ΔJ is from measured $\gamma(\theta)$.

^h From (γ, γ') .

^{*i*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*j*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

--- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{92}_{42} Mo_{50}$

⁹²₄₂Mo₅₀

 $^{92}_{42}{\rm Mo}_{50}$

27

From ENSDF

 $^{92}_{42}\mathrm{Mo}_{50}\text{--}27$

