⁹²Mo(**p**,**p**'γ) 1975Pa19,1973DoZB

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012						

Others: 1966Di01, 1968Li10, 1969Li11, 1971Co08, 1972Mo36, 1974Cu04. 1968Li10: E(p)=7.96 MeV; θ =30°-140°; via ⁹³Tc IAR. γ(θ). 1972Mo36: E(p)=8,11 MeV; FWHM=4 keV; measured E(ce); ΔE, I(ce) unstated.

1973DoZB: E(p)=7 MeV; $E\gamma$, branching, $p'-\gamma$ coin.

1975Pa19: E(p)=7.0, 7.6, 8.5 MeV; E γ , branching, $\gamma(\theta)$, $\gamma(t)$ (DSA).

⁹²Mo Levels

The level scheme is from 1975Pa19 and agrees closely with that from 1973DoZB. The 480γ , at one time assigned to a level at 3572 keV, actually deexcites the 3007-keV level (1975Pa19).

E(level) [†]	J ^{π‡}	T _{1/2} #	Comments	
0.0	0^{+}			
1509.48 <i>3</i>	2^{+}	0.36 ps +8-5		
2282.64 8	4+	>3.4 ps	J ^π : from 773 $\gamma(\theta)$, J=4, J≠2,3,5.	
2519.71 8	0^{+}	>3.4 ps		
2527.10 10	5-	$1.55^{\textcircled{0}}$ ns 4		
2613.5 4	6+			
2849.74 5	3-	0.34 ps +18-9	J ^{π} : from 1340 $\gamma(\theta)$, J=2,3, J≠4; however, J=2 would imply large δ .	
3007.11 16				
3064.19 11	(4 ⁻)		J^{π} : J=3,4,5 from 537 $\gamma(\theta)$, but δ unreasonably large if $J^{\pi}=5^+$ or 3. Absence of level in (α, α') may suggest unnatural π , favoring a 4 ⁻ assignment. adopted $J^{\pi}=(5^-)$.	
3091.33 22	2+	35 fs 3	T _{1/2} : 1975Pa19 obtain 21 fs 6. J ^{π} : from 3091 $\gamma(\theta)$, J=2, J \neq 3,4.	
3369.16 14	4	>3.4 ps	J^{π} : 1086 $\gamma(\theta)$ allows J=4,5, not 3. Magnitude of δ rules out 5 ⁻ . Possible branch to 2 ⁺ .	
3542.00 11	2+	0.090 ps +42-28	$T_{1/2}$: 1975Pa19 obtain 0.061 ps +24–17.	
			J^{π} : 2033 $\gamma(\theta)$ allows J=2,3, not 1. Mult(3541 γ)=E1,M1,E2, from T _{1/2} . γ rays to 2 ⁺ , 0 ⁺ levels.	
3580.38 17		>0.21 ps	J^{π} : 1053 $\gamma(\theta)$ allows J=3,4,5.	
3621.2 4		>0.21 ps		
3688.00 13		>0.69 ps		
3813.9 <i>3</i>		>0.48 ps		
3841.2 <i>4</i> 3876.1 <i>5</i>	0^+	>0.21 ps		
3925.0 4	2+	17 fs +16-10	$T_{1/2}$: 1975Pa19 obtain 20 fs +20-12.	
3942.5 4	1,2+	10 fs + 10 - 3	$T_{1/2}$: 1975Pa19 obtain 21 fs +20-12.	
5902.50 20		~0.21 ps		

[†] From least-squares fit to $E\gamma$.

[‡] J^{π} values shown for levels above 2 MeV were proposed by 1975Pa19 based on $\gamma(\theta)$, assuming adopted values for g.s. and 1509 level.

[#] Evaluator adopts values from DSA measurements of 1973DoZB using Winterbon attenuation factors, because they are in better agreement with other half-life measurements than are the DSA values obtained by 1975Pa19 using Blaugrund attenuation factors (see also comment in 1977Me01).

[@] From p'-244 γ delayed measurements (1971Co08).

⁹²₄₂Mo₅₀-2

				⁹² Mo ()	p,p ′γ)	1975P a	19,1973DoZB (cc	ontinued)		
γ (⁹² Mo)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	Comments		
1509.48 2282.64 2519.71	$2^+ 4^+ 0^+$	1509.47 <i>3</i> 773.10 8 1010.22 <i>7</i>	100 100 100	0.0 1509.48 1509.48	$0^+ 2^+ 2^+$	Q(+0)	-0.12 +22-14	A ₂ =+0.22 4, A ₄ =-0.20 4 (1975Pa19).		
2527.10 2613.5 2849.74	5- 6+ 3-	244.47 7 330.9 ^{<i>a</i>} 4 567.05 12	100 100 16 2	2282.64 2282.64 2282.64	4 ⁺ 4 ⁺ 4 ⁺			$A_2 = -0.22 5$ (1968Li10); implies $\Delta J = 0,1$.		
		1340.26 <i>4</i>	84 2	1509.48	2+	D+Q	-0.09 +5-21	δ: from table 4 (summary of observed electromagnetic transition rates) of 1975Pa19; δ misprinted in table 3 (summary of $\gamma(\theta)$ analyses). A ₂ =-0.35 2, A ₄ =-0.03 3 (1975Pa19);		
2007 11		490 12 14	100	2527 10	5-			$A_2 = -0.285$ (1968L110).		
3064.19	(4 ⁻)	480.12 <i>14</i> 537.07 <i>4</i>	100	2527.10	5 5-			A_2 =-0.44 10, A_4 =-0.08 11 (1975Pa19). δ is ≥1.2 if J=5; +0.5 to +2.8 if J=3; +0.25 +25-11 or +5 +14-3 if J=4		
3091.33	2+	1581.9 <i>3</i> 3091.2 <i>3</i>	19 2 81 2	1509.48 0.0	$2^+_{0^+}$	D+Q E2	+0.63 ^c 11	A ₂ =+0.50 <i>12</i> , A ₄ =-0.05 <i>13</i> (1975Pa19). Mult.: Q from $\gamma(\theta)$; RUL disallows M2. A ₂ =+0.32 4 A ₄ =-0.09 5 (1975Pa19)		
3369.16	4	304.8 2 362.3 2 842.1 2	35 <i>3</i> 17 2 37 2	3064.19 3007.11 2527.10	(4 ⁻) 5 ⁻					
		1086.4 2 1859.5 ^{&e}	11 2	2282.64 1509.48	4 ⁺ 2 ⁺	D+Q	+0.27 +51-24	$A_2 = +0.47 5$, $A_4 = +0.12 6$ (1975Pa19).		
3542.00	2+	2032.5 1	86 5	1509.48	2+	E2+M1	-1.7 +9-26	A ₂ =-0.30 8, A ₄ =-0.04 8 (1975Pa19). Mult=D+Q, but δ too large for E1+M2 transition.		
3580.38		3541.4 9 1053.4 2 1297.6 2	14 5 57 4 43 4	0.0 2527.10 2282.64	0^{+} 5^{-} 4^{+}	Q(+O)	-0.12 +19-32	A ₂ =+0.18 7, A ₄ =-0.10 8 (1975Pa19).		
3621.2		2111.7 4	100	1509.48	2+					
3688.00		838.3 <i>3</i> 2178.48 <i>13</i>	48 <i>3</i> 52 <i>3</i>	2849.74 1509.48	3 ⁻ 2 ⁺					
3813.9		750.8 ^{&e} 807.7 ^{&e} 964.5 5 2304 3 3	45 <i>3</i> 55 3	3064.19 3007.11 2849.74 1509.48	(4 ⁻) 3 ⁻ 2 ⁺					
3841.2	0^{+}	2331.7 4	100	1509.48	$\frac{1}{2^{+}}$					
3876.1	-	1593.3 5	38 7	2282.64	4+					
		2367.0 7	62 7	1509.48	2^{+}					
3925.0	2^{+}	2415.5 5	35 5	1509.48	2+					
		3924.9 5	65 5	0.0	0^+					
3942.5	$1,2^{+}$	3942.4 4	100	0.0	0^{+}					
3962.38		594.9 ^{&} e 898.0 2	49 <i>4</i>	3369.16 3064.19	4 (4 ⁻)					
		1113.2 4	27 3	2849.74	3^{-}					
		2453.4 7	24 3	1509.48	21					

[†] From 1975Pa19, unless noted otherwise.

[‡] Branching, from 55° data of 1975Pa19. 1973DoZB report different branching for 3369, 3814 and 3962 levels to accommodate γ rays which they alone observe, as follows: 3369 level: I(304 γ):I(362 γ):I(842 γ):I(1086 γ):I(1860 γ)=70:15:5:10:5; 3814 level: I(751 γ):I(808 γ):I(965 γ):I(2304 γ)=5:5:45:45; 3962 level: I(595 γ):I(898 γ):I(1113 γ):I(2453 γ)=25:15:30:10.

[#] Based on $\gamma(\theta)$ from 1975Pa19.

⁹²Mo(**p**,**p**'γ) **1975Pa19,1973DoZB** (continued)

$\gamma(^{92}Mo)$ (continued)

- ^(a) From $\gamma(\theta)$, 1975Pa19, assuming J(parent level)=adopted J. See 1975Pa19 for additional δ values corresponding to other plausible J values.
- & Reported by 1973DoZB only. For branching, see comment on $I\gamma$.
- ^{*a*} Given as 333.9 keV in 1975Pa19, but level energy difference is 330.9 and $E\gamma=329.76$ 12 is associated with this level in (α ,2n γ); $E\gamma=333.9$ is assumed to be a misprint.
- ^b From ce data of 1972Mo36. ΔE not stated by authors.
- ^{*c*} From table 4 (summary of observed electromagnetic transition rates) of 1975Pa19; table 3 (summary of $\gamma(\theta)$ analyses) quotes 0.7 +5-4. Reason for discrepancy not evident.
- ^d Absolute intensity per 100 decays.
- ^e Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

⁹²Mo(**p**,**p**′γ) 1975Pa19,1973DoZB

Legend

Level Scheme

Intensities: % photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{92}_{42}{\rm Mo}_{50}$

4