⁹⁰Zr(*α*,2n*γ*) 1978Nu01,1978Ba62,1971Le19

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin	NDS 113, 2187 (2012)	15-Sep-2012						

Others: 1971Co08, 1971Na16, 1974Ba11, 1977Ha49, 1978Ha52.

1978Ba62: $E(\alpha)=26$ MeV. $E\gamma$, $\gamma\gamma$ coin (prompt and delayed). 1978Nu01: $E(\alpha)=28$ MeV. $E\gamma$, $I\gamma$, $\gamma(\theta)$, $\gamma\gamma$ coin (prompt and delayed).

1977Ha49: $E(\alpha)=24$ MeV. $E\gamma$, $\gamma(\theta)$, $\gamma(t)$, $\gamma(\theta,H,t)$.

1974Ba11: $E(\alpha) = 24$ MeV. Measured $Q(^{94}Mo)/Q(^{92}Mo)$ by TDPAD.

1971Co08: $E(\alpha)=20-24$ MeV. $E\gamma$, $\gamma(\theta,H,t)$.

1971Le19, 1969Ja03: $E(\alpha)=30$ MeV. $E\gamma$, $I\gamma$, $\gamma(\theta)$, beam- $\gamma(t)$.

1971Na16: $E(\alpha)=25$ MeV. $\gamma(\theta,H,t)$.

⁹²Mo Levels

The level scheme is a combination of schemes from 1978Nu01 and 1978Ba62, based on extensive prompt and delayed $\gamma\gamma$ coin data and intensity balance. Except for a reassignment by 1978Nu01 for the 111 γ , both 1978Nu01 and 1978Ba62 confirm the levels proposed in 1971Le19, and each proposes a number of additional levels none of which is confirmed by the other. 1977Ha49 conclude that the yrast cascade passes via the 11⁻ state, largely avoiding population of the 8⁺ state.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 1509.59 <i>13</i> 2282.65 <i>18</i> 2527.05 <i>24</i> 2612.44 <i>21</i>	$ \begin{array}{c} 0^+ \\ 2^+ \\ 4^+ \\ 5^- \\ 6^+ \end{array} $		
2760.4 3	8+	207 [#] ns 8	 μ=+11.30 5 (1977Ha49) μ: g-factor=1.413 6 (1977Ha49,1978Ha52) from TDPAD. others: +1.419 10 (1977Ku22, TDPAD), 1.409 16 (1971Na16), 1.40 7 (1971Co08). Q: Q(⁹⁴Mo, 8⁺)/Q(⁹²Mo, 8⁺)=1.48 12 (1974Ba11, TDPAD).
3007.0 <i>3</i> 3063.6 <i>11</i> 3367.6 <i>14</i>			
3624.8 3 3752.7 14 3758.1 11 3871 6 10	7-		
4251.6 <i>4</i> 4328.5? <i>11</i>	9-		
4486.5 5 5122.4 10 5151.8 5 5312.5 21 5862.7 11	11 ⁻ 10 ⁺ (10,11,12) ⁻ 12 ⁺	8.7 [@] ns 2	J^{π} : J=(10) proposed by 1978Ba62; no justification given.
6571.9 ^{&} 21 6683.1 ^{&} 2 7334.0? ^{&} 21			

[†] From least-squares fit to $E\gamma$.

[‡] Proposed by 1978Nu01 on basis of $\gamma(\theta)$ and I γ balance.

[#] Weighted average of 191 ns 7 (1971Co08, (n(0.5-3.5 MeV)-148γ(t))), 214 ns 5 (1977Ha49), 219 ns 22 (1971Le19). Other: 240 ns 50 (1971Le19).

⁹⁰Zr(α,2nγ) **1978Nu01,1978Ba62,1971Le19** (continued)

⁹²Mo Levels (continued)

^(a) From 235 γ (t). Other γ (t) data give 8.4 ns 4, 9.5 ns 5, 8.0 ns 7, 10.0 ns 9, 9.0 ns 9 (1971Le19). The weighted average of all data is 8.75 ns 18.

[&] Possibly ≈ 20 keV high; see comment on 2085 γ .

γ (⁹²Mo)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{e}	Comments
85.5 2	4.5 1	2612.44	6+	2527.05	5-			
111.2 ^{&} 2	2.5 1	6683.1		6571.9		D		$A_2 = -0.104, A_4 = +0.139 (1971Le19).$
148.0 2	27.1 1	2760.4	8+	2612.44	6+	E2 ^{<i>c</i>}	0.292	$A_2 = -0.05 \ 3, \ A_4 = +0.08 \ 4 \ (1971Le19);$ $A_2 = +0.05 \ 2 \ (1971Na16), \ +0.099 \ 10$ $(1971Co08), \ +0.082 \ 15 \ (1974Ba11).$
234.9 2	21.4 <i>I</i>	4486.5	11-	4251.6	9-	Q		$A_2 = +0.13 4$, $A_4 = -0.01 7$ (1971Le19).
244.5 2	50.9 2	2527.05	5-	2282.65	4+	D		A ₂ =-0.15 4, A ₄ =0.00 6 (1971Le19).
304 ^{<i>a</i>} 1		3367.6		3063.6				
329.76 ^b 12	37.7 2	2612.44	6+	2282.65	4+	(E2)	0.01762	$A_2 = +0.28 \ 4 \ (1977Ha49); A_2 = +0.14 \ 3, A_4 = 0.05 \ 5 \ (1971Le19).$
385 ^a 1		3752.7		3367.6				
480.0 2	2.5 1	3007.0		2527.05	5-			
536.6 ^a 10 ^x 596 ^a 1		3063.6		2527.05	5-			
626.8 2	28.2 2	4251.6	9-	3624.8	7-	Q		$A_2 = +0.17 3$, $A_4 = 0.00 5$ (1971Le19).
650.9 [@] <i>f</i> 2	1.5 3	7334.0?		6683.1				
665.3 2	2.6 2	5151.8	$(10, 11, 12)^{-}$	4486.5	11-	(M1)		A ₂ =+0.03 <i>12</i> ; M1 (1978Nu01).
689 ^a 1		3752.7		3063.6				_
740.3 2	3.3 2	5862.7	12+	5122.4	10^{+}	(E2)		$A_2 = +0.32$ 9; stretched E2 (1978Nu01).
773.05 ^b 12	96.1 4	2282.65	4+	1509.59	2+	(E2)		$A_2 = +0.365 \ 10 \ (1978Nu01), \ +0.29 \ 3 \ (1977Ha49), \ +0.15 \ 3 \ (1971Le19).$
1097.7 2	29.7 <i>3</i>	3624.8	7-	2527.05	5-	(E2)		$A_2 = +0.369 \ 15 \ (1978Nu01); A_2 = +0.19 \ 9,$ $A_4 = -0.01 \ 9 \ (1971Le19).$
1231 ^{<i>a</i>} 1		3758.1		2527.05	5-			,
1509.58 ^b 13	100.0 6	1509.59	2+	0.0	0^+	(E2)		$A_2 = +0.252 \ 7 \ (1978 \text{Nu}01), \ +0.31 \ 3 \\ (1977 \text{Ha}49), \ +0.15 \ 4 \ (1971 \text{Le}19).$
$1568^{af} 1$ x1680 ^a 1		4328.5?		2760.4	8+			
^x 1735 ^a 1								
^x 1754 ^a 1								
^x 2062 ^a 1								
2085.4 ^{@d} 20	3.4 2	6571.9		4486.5	11-			$A_2 = +0.02$ 12.
2362 ^{<i>a</i>} 1		3871.6		1509.59	2^{+}			
2362 ^{<i>a</i>} 1	7.0 4	5122.4	10+	2760.4	8+	(E2)		E _γ : 2357.2 20 in 1978Nu01; placed by 1978Nu01 only.
					0			$A_2 = +0.33$ 6; stretched E2 (1978Nu01).
2552 ^u I		5312.5		2760.4	8+			

[†] From 1978Nu01, unless noted otherwise.

[‡] From 1978Nu01 for E α =28 MeV, θ =55°. Uncertainties include only statistical deviations.

[#] From $\gamma(\theta)$. 1978Nu01 assume their mult=Q transitions are E2. Note: A₂, A₄ from 1971Le19 are significantly attenuated but can, nevertheless, differentiate between Q and D transitions.

[@] Reported by 1978Nu01 only.

& The 111 γ was suggested by 1971Le19 to deexcite a level at 4597 keV. However, evaluator adopts placement and I γ of

⁹⁰Zr(α,2nγ) **1978Nu01,1978Ba62,1971Le19** (continued)

$\gamma(^{92}Mo)$ (continued)

1978Nu01, who suggest that discrepant I γ =6.7 20 of 1971Le19 includes a contribution from (α ,p γ) reaction on ¹⁶O in oxide target.

- ^{*a*} From 1978Ba62. ΔE not given by authors; however, $E\gamma$ values from 1978Ba62 differ from adopted $E\gamma$ by ≤ 1.2 keV (typically 0.4 keV higher than adopted), so evaluator has assigned $\Delta E=1$ keV to this datum.
- ^b Weighted average of data from 1978Nu01 and 1977Ha49.
- ^{*c*} $\alpha(\exp)=0.24$ 10, based on relative cascade intensities in delayed spectrum (1971Le19). $\alpha(\text{theory})=0.041(\text{E1})$, 0.086(M1), 0.294(E2), 0.645(M2), so $\alpha(\exp)$ consistent with E1+M2 (δ =0.44 to 1.0) or E2(+?); the former is ruled out on the basis of RUL which requires $\delta(\text{E1},\text{M2})<0.11$.
- ^d E γ =2085.4 is quoted consistently throughout 1978Nu01; however, two E γ values from independent (¹⁶O,4n γ) and (³⁷Cl,2p2n γ) studies are each 20 keV lower; evaluator suspects that E γ from 1978Nu01 is incorrect or γ is misplaced, and does not adopt it.
- ^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{92}_{42}\mathrm{Mo}_{50}\text{-}4$

 $^{92}_{42}{
m Mo}_{50}$

4