⁹¹Nb ε decay (60.86 d) 1993Hi09,1986Wa34,1955Ha23

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013				

Parent: ⁹¹Nb: E=104.60 5; $J^{\pi}=1/2^{-}$; $T_{1/2}=60.86$ d 22; $Q(\varepsilon)=1258$ 3; $\%\varepsilon+\%\beta^{+}$ decay=3.4 5

⁹¹Nb-%ε+%β⁺ decay: From α(105γ, ⁹¹Nb)=167 (M4 theory), εK(theory) and I(105γ, ⁹¹Nb):Iβ⁺:I(1205γ):Iε(g.s.)=0.55 3:0.0024 5:1.92 8:1.3 4 (1993Hi09) in ⁹¹Nb(60.86 d) decay, it follows that %Iβ+(to ⁹¹Zr g.s.)=0.0025 5, %(1205γ)=2.02 8 and %(ε to ⁹¹Zr g.s.)=1.4 4, so %(105(γ+ce), ⁹¹Nb)=(100-3.4 5). 1993Hi09 have corrected their measured Iβ⁺ for a 6% 2 contribution from 1205γ pair production. (1993Hi09 report slightly different branching because they assume α(105)=174.) Note that Iγ(105γ, ⁹¹Nb)/Iγ(1205)=0.286 16 from 1993Hi09, cf. 0.233 9 (1986Wa34), 0.164 (1955Ha23).
Others: 1969Be07, 1993Be08.

1993Hi09: radiochemically separated ⁹¹Nb source; intrinsic Ge detectors; measured I(γ^{\pm}), I(Zr K x ray), I γ , I(Nb K x ray), K x ray- γ coin.

1986Wa34:Ge(Li). Measured $E\gamma$, $I\gamma$, ce.

1969Be07: Ge(Li), FWHM=3.1 keV at 934 keV. Measured Ey.

1955Ha23: scin. Measured $E\gamma$, $I\gamma$, $X\gamma$ coin.

⁹¹Zr Levels

E(level) [†]	J ^{π‡}
0	$5/2^{+}$
1204.68 8	$1/2^{+}$

[†] From $E\gamma$.

[‡] From Adopted Levels.

 ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(158 3)	1204.68		2.02 8	6.78 <i>3</i>	2.02 8	ε K=0.8483 6; ε L=0.1233 5; ε M+=0.02838 12 ε K(exp)=0.765 22 (1993Be08) from (K x ray)- γ coin; significantly different from theory (0.765 22) for allowed transitions.
(1363 3)	0	0.0013 3	1.4 3	9.60 ¹ <i>u</i> 15	1.4 3	av E β =169.8 <i>14</i> ; ε K=0.8672; ε L=0.10764 2; ε M+=0.024283 4 I β^+ : 0.0025% 5 from 1993Hi09; deduced from I(γ^{\pm}) and I(K x ray, Zr) measured as a function of time for~590 days in order to differentiate between contributions from ⁹¹ Nb(60.86 d) and ⁹¹ Nb(680 y) in source. The measured I β^+ implies I ε =2.7% 6 (cf. measured value of 1.4% 4) and log $f^{1u}t$ =9.45 9 based on first-forbidden unique theory. I ε : measured value=1.4% 4 (1993Hi09) (cf. 2.7% 6 expected based on theory and measured I β^+); log $f^{1u}t$ =9.74 <i>13</i> based on measured value. Log <i>ft</i> : mean of values obtained based on measured I β^+ and I ε (9.45 9 and 9.74 <i>13</i> , respectively).

[†] Absolute intensity per 100 decays.

From ENSDF

⁹¹Nb ε decay (60.86 d) 1993Hi09,1986Wa34,1955Ha23 (continued)

$\gamma(^{91}\mathrm{Zr})$

Iγ normalization: From $\alpha(105\gamma, {}^{91}\text{Nb})=167$ (M4 theory), ε K(theory) and I(105γ, ${}^{91}\text{Nb}):I\beta^+:I(1205\gamma):I\varepsilon(g.s.)=0.55$ 3:0.0024 5:1.92 8:1.3 4 (1993Hi09) in ${}^{91}\text{Nb}(60.86 \text{ d})$ decay, it follows that $\% I\beta$ +(to ${}^{91}\text{Zr}$ g.s.)=0.0025 5, $\%(1205\gamma)=2.02$ 8 and $\%(\varepsilon$ to ${}^{91}\text{Zr}$ g.s.)=1.4 4, so $\%(105(\gamma+ce), {}^{91}\text{Nb})=(100-3.4 5)$. 1993Hi09 have corrected their measured I β^+ for a 6% 2 contribution from 1205 γ pair production. (1993Hi09 report slightly different branching because they assume $\alpha(105)=174$.) Note that I $\gamma(105\gamma, {}^{91}\text{Nb})/I\gamma(1205)=0.286$ 16 from 1993Hi09, cf. 0.233 9 (1986Wa34), 0.164 (1955Ha23).

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α@	Comments
1204.67 8	2.02 8	1204.68	1/2+	0	5/2+	E2	0.000452 7	$\begin{aligned} &\alpha = 0.000452 \ 7; \ \alpha(\text{K}) = 0.000392 \ 6; \ \alpha(\text{L}) = 4.32 \times 10^{-5} \ 6; \\ &\alpha(\text{M}) = 7.48 \times 10^{-6} \ 11; \ \alpha(\text{N}+) = 9.69 \times 10^{-6} \ 14 \\ &\alpha(\text{N}) = 1.062 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 7.47 \times 10^{-8} \ 11; \\ &\alpha(\text{IPF}) = 8.55 \times 10^{-6} \ 12 \\ &\text{E}_{\gamma}: \text{ other datum: } 1205.0 \ 7 \ (1969\text{Be07}). \\ &\text{I}_{\gamma}: \text{ from } 1993\text{Hi09}. \end{aligned}$

[†] From 1986Wa34.

[‡] From Adopted Gammas.

[#] Absolute intensity per 100 decays.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁹¹Nb ε decay (60.86 d) 1993Hi09,1986Wa34,1955Ha23

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

