History								
Type Author		Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013					

Parent: ⁹¹Nb: E=0.0; $J^{\pi}=9/2^+$; $T_{1/2}=6.8\times10^2$ y *13*; $Q(\varepsilon)=1258$ *3*; $\%\varepsilon+\%\beta^+$ decay=100.0 Additional information 1.

Additional information 1. 1993Hi09: radiochemically separated ⁹¹Nb source; intrinsic Ge detectors; measured $I(\gamma^{\pm})$, I(Zr K x ray); deduced %I β +.

1982Na17: HPGe detector, FWHM=263 eV at 5.9 keV and 563 eV at 122 keV. Measured K x ray activity of mass-separated sample; deduced parent $T_{1/2}$.

⁹¹Zr Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi}}{5/2^{+}}$

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(1258 3)	0	0.170 10	99.830 10	10.58 9	100	av E β =109.7 13; ε K=0.8696; ε L=0.10509 2; ε M+=0.023621 4 I β ⁺ : see comment on log ft. measured I β =0.0077% 8 (1993Hi09), deduced from I(γ^{\pm}) and I(K x ray, Zr) measured as a function of time for~590 days in order to differentiate between contributions from ⁹¹ Nb(60.86 d) and ⁹¹ Nb(680 y) in source. I ε : (100 – measured %I β +)=99.9923 8 (1993Hi09). see comment on log ft. Log ft: calculated for an allowed transition assuming %(ε + β^{+})=100. However, note that measured I $\beta^{+}/I\varepsilon$ =0.000077 8 for this second-forbidden nonunique transition differs significantly from that calculated here (0.00170 10) assuming an allowed transition.

 † Absolute intensity per 100 decays.