$\frac{\text { Type }}{\text { Full Evaluation }} \frac{\text { Author }}{\text { Coral M. Baglin }} \quad \frac{\text { Citation }}{\text { NDS 114, 1293 (2013) }} \quad \frac{\text { Literature Cutoff Date }}{1-S e p-2013}$

1990Fo04: $\mathrm{E}=500$, 600 MeV ; $98.5 \%{ }^{90} \mathrm{Zr}$ target; magnetic spectrograph; $\theta(\mathrm{lab})=5.3^{\circ}, 7^{\circ}, 8^{\circ}$ for $\mathrm{E}=600 \mathrm{MeV}$, 6.4° for $\mathrm{E}=500 \mathrm{MeV}$; $\Delta \mathrm{E} / \mathrm{E} \approx 3 \times 10^{-3}$. DWBA calculations.
${ }^{91} \mathrm{Zr}$ Levels

E(level) Comments
$2.5 \times 10^{3} 10 \quad \mathrm{E}\left(\right.$ level): probable multiplet dominated by known $\mathrm{h}_{11 / 2}$ (2170 and 4070) and $\mathrm{g}_{7 / 2}$ (2201 and 3469) states (1990Fo04). $14 \times 10^{3} 1 \quad \mathrm{E}$ (level): probably arises from $\mathrm{i}_{13 / 2}$ orbital excitations, based on selectivity of this reaction for transfer to high spin orbitals (1990Fo04). May be same structure as observed in $\left(\alpha,{ }^{3} \mathrm{He}\right)$ reaction. Not included in Adopted Levels.

