Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013

 $Q(\beta^{-})=1544.3 \ 18; \ S(n)=7928.3 \ 25; \ S(p)=7692 \ 3; \ Q(\alpha)=-4179 \ 3 2012Wa38$ Hyperfine anomaly between ^{91g}Y and ^{91m}Y In Fe: see 2004Ni13 (NMR on oriented nuclei with β and γ detection); -4.2% 8 anomaly.

Theory (partial list):

Level structure: 1975Gl07, 1966Ve02, 1965Au04 (shell-model calculations).

Unique-forbidden β decay matrix elements: 1985Kh03, 1985To18, 1972Ej01.

Magnetic moment: 1988Sa42, 1986Le15 (quasi-particle phonon model).

Other reaction:

 92 Zr(γ ,p) (2007Tr10); 18, 21.5, 23.5 MeV bremsstrahlung end-point energies; measured γ spectra; observed known 555 γ from 91 Y and and 1205 γ from 91 Zr; deduced isomeric ratio for 91m,g Y.

⁹¹Y Levels

Cross Reference (XREF) Flags

		$ \begin{array}{rcl} A & {}^{91}Y \\ B & {}^{91}S \\ C & {}^{89}Y \\ D & {}^{92}Z \end{array} $	TT decay (4 r β^- decay (t,p) r(d, ³ He),(t, α	49.71 min) E ${}^{94}Zr(p,\alpha)$ F ${}^{12}C({}^{82}Se,p2n\gamma)$ G ${}^{173}Yb({}^{24}Mg,X\gamma),{}^{176}Yb({}^{23}Na,X\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	1/2-	58.51 d 6	ABCDE G	 %β⁻=100 μ=0.1641 8 J^π: J=1/2 from atomic beam (1962Pe21); L(t,p)=0 on 1/2⁻ target. T_{1/2}: from 1971Ba28. Other measurements: 58.8 d 2 (1963Ho15), 59.1 d 2 (1961Wy01), 58.3 d 8 (1956He77), 57.5 d 5 (1955Ka12), and 58.5 d 10 (1954Bu38). μ: From atomic beam magnetic resonance (1989Ra17 and 2011StZZ, from 1962Pe21); relative to ⁸⁹Y.
555.58 [#] 5	9/2+@	49.71 min 4	AB DEFG	 %IT≈100; %β⁻<1.5 (1953Am08) μ=5.96 4 (1991Be18) J^π: L(t,α)=4; M4 transition to 1/2⁻. T_{1/2}: from 1969Kn01. Other measurement: 50.30 min 25 (1953Am08). μ: From NMR on oriented nuclei (2011StZZ from 1991Be18), assuming the hyperfine field for Y in Fe is -30.67 T 18. Other μ: 6.01 +31-15 (1991Be18) and 5.96 6 (1992Be50) arising from different assumed values for the latter field. Additionally, μ(⁸⁷Y, 381)/μ=1.016 1 (1992Be50).
653.02 7	$3/2^{-}$		BCDE	J^{π} : L(t, α)=1; L(t,p)=2 on 1/2 ⁻ target.
925.74 7	$\frac{5}{2}$ $(7/2)^{-}$		BCDE BCE	J^{π} : L(t, α)=3; L(t, p)=2 on 1/2 target. J $^{\pi}$: L(t, p)=4 on 1/2 target; 534 γ to 3/2 653. Supported by J $^{\pi}(p,\alpha)$ =(7/2).
1305.39 6	$(5/2)^+$		ΒĒ	J^{π} : M1,E2 750 γ to 9/2 ⁺ 556; 652 γ to 3/2 ⁻ 653; $J^{\pi}(p,\alpha)=(5/2^+)$. 1305 γ feeds 1/2 ⁻ g.s., but it is a very weak branch.
1473.69 7	3/2-		BCDE	J^{π} : L(t, α)=1; L(t,p)=2 for 1/2 ⁻ target.
1485.09 [#] 21	$(13/2^+)^{\textcircled{0}}$		FG	J^{π} : stretched Q 930 γ to 9/2 ⁺ 556.
1545.90 0	(5/2)		BDE	XREF: D(1552). J ^π : L(t,α)=3: 1546γ to $1/2^-$: 359γ to $(7/2)^-$: J ^π (p,α)=(5/2 ⁻).
1547 10	7/2 ⁻ ,9/2 ⁻		С	J^{π} : L(t,p)=4 on 1/2 ⁻ target. Probably differs from 1552 level seen in (t, α). Otherwise, L(t, α)=3 and L(t,p)=4 on 1/2 ⁻ target would determine J^{π} =7/2 ⁻ ; such a state would exhaust 50% of the f _{7/2} proton hole strength, in contradiction to shell-model systematics (1975Pr04).

Continued on next page (footnotes at end of table)

 ${}^{91}_{39}Y_{52}$ -1

Adopted Levels, Gammas (continued)

⁹¹Y Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1579.93 7	$5/2^+, 7/2^+$	BE	J^{π} : log $ft=6.4$, log $t^{4u}t=7.1$ from $5/2^+$: 1024 γ to $9/2^+$ is M1 or E2.
1980.41 7	$(5/2)^{-}$	BCDE	XREF: D(1974).
			J^{π} : 3/2 ⁻ , 5/2 ⁻ from L(t,p)=2 on 1/2 ⁻ target; (5/2 ⁻) from (p, α). L(t, α)=(3), inconsistent
			with $L(d, {}^{3}He) = (1)$.
2066.62 7	$(5/2)^+$	BCD	J^{π} : L(t,p)=3 on 1/2 ⁻ target. 1413 γ to 3/2 ⁻ 653 level.
2129.09 12	3/2,5/2,7/2	Βd	XREF: d(2159).
	-		J^{π} : log ft=8.1, log f ^{1u} t=8.3 from 5/2 ⁺ .
2157.1 [#] 3	$(17/2^+)^{@}$	FG	J^{π} : stretched Q 672 γ to (13/2 ⁺) 1485.
2158 15	3/2-,5/2-	Cd	XREF: d(2159).
2206 76 0	5/0-		J^{π} : L(t,p)=2 on 1/2 ⁻ target.
2206.76 9	5/2-	BCDE	J^{n} : L(t, α)=3. L(t,p)=2 on 1/2 ⁻ target. However, 1651 γ to 9/2 ⁺ ; transfer reactions and
2270 24 10	(5/2+7/2-)	р	decay may populate two different levels at this energy. $\overline{M}_{1} \log \frac{4}{7} = 1 \log \frac{4}{16} = 7.1 \text{ from } 5.0^{+} + 1724 \text{ to } 0.0^{+} + 1607 \text{ to } 2.0^{-}$
22/9.34 10	$(3/2^{-}, 1/2^{-})$	в	$J^{-1} \log f = 7.1, \log f^{-2} t = 7.1$ from $5/2^{-1}; 1/24\gamma \log 9/2^{-1}; 102/\gamma \log 3/2^{-1}$.
2412.13 12	(3/2)		J : $\log \int l^2 / l^2 / l^2 = 1.5$ from $J/2^2$, $J^{(p, \ell)} = (5/2^2)$. $I^{\pi_1} I (t, \alpha) = 1: I (t, p) = 2$ on $1/2^{-2}$ target
2530	$(5/2^{-})$	F	$J : E(t, \alpha) = 1, E(t, \beta) = 2 \text{ on } 1/2 \text{ target.}$ $J^{\pi} : J^{\pi}(n \alpha) = (5/2^{-})$
2568 11	$1/2^{-}$	CD	J^{π} : L(t,p)=0 on 1/2 ⁻ target. Supported by L(t, α)=1.
2572.13? 12	$(5/2^+, 7/2, 9/2^-)$	В	J^{π} : 2016 γ to 9/2 ⁺ ; 1646 γ to 5/2 ⁻ 926.
2631		С	Possibly an unresolved doublet.
2689	$(7/2^{-}, 9/2^{-})$	С	J^{π} : L(t,p)=(4) on 1/2 ⁻ target.
2761.9 6	(15/2,17/2)	G	J^{π} : 1277 γ to (13/2 ⁺) 1485 In (²⁴ Mg,X γ).
2780	$(9/2^{+})$	E	J^{π} : $J^{\pi}(p,\alpha) = (9/2^+)$.
2822 15	$(2/2^{-})$	С	XDEE , E(2070)
2900	(3/2)	CE	AREF: E(2970). $I^{\pi_{1}}$ (3/2 ⁻) from (n α) assuming this level is identical to the 2070 keV level in (n α)
2980	$(1/2^{-})$	C	J^{-} : $(5/2^{-})$ from (p, a) , assuming this level is identical to the 2570 keV level in (p, a) . J^{π} : $L(t, p)=(0)$ on $1/2^{-}$ target.
3045	$1/2^{-}$	c	J^{π} : L(t,p)=0 on 1/2 ⁻ target.
3100	$(9/2^{-})$	Е	$J^{\pi}: J^{\pi}(p,\alpha) = (9/2^{-}).$
3162.9 6	(15/2,17/2)	G	J^{π} : 1678 γ to (13/2 ⁺) 1485 In (²⁴ Mg,X γ); 570 γ from (19/2,27/2) 3733.
3196	$(7/2^{-}, 9/2, 11/2^{+})$	С	Possibly an unresolved doublet.
		_	J^{π} : L(t,p)=(4,5) on 1/2 ⁻ target.
3227	$(9/2^+,11/2^+)$	C	J^{π} : L(t,p)=(5) on $1/2^{-}$ target.
3284	1/2, $9/211/2^{-} 13/2^{-}$	C	J^{-1} : L(l,p)=4 on 1/2 target. I^{π} : L(l,p)=6 on 1/2 target.
3353	$7/2^{-} 9/2^{-}$	C	J^{π} : L(t,p)=0 on 1/2 target. I^{π} : L(t,p)=4 on 1/2 ⁻ target
3414	$7/2^{-},9/2^{-}$	c	J^{π} : L(t,p)=4 on 1/2 ⁻ target.
3445	7/2-,9/2-	C	J^{π} : L(t,p)=4 on 1/2 ⁻ target.
3502	5/2+,7/2,9/2-	С	J^{π} : L(t,p)=3,4 on 1/2 ⁻ target.
3527.7 [#] 4	$(21/2^+)^{@}$	FG	J^{π} : stretched Q 1371 γ to (17/2 ⁺) 2157.
3544	11/2-,13/2-	С	J^{π} : L(t,p)=6 on 1/2 ⁻ target.
3568.1 6	(19/2,21/2)	G	J^{π} : 1411 γ to (17/2 ⁺) 2157 In (²⁴ Mg,X γ).
3611	$(3/2^{-}, 5/2^{-})$	C	J^{π} : L(t,p)=(2) on 1/2 ⁻ target.
3684	$(3/2, 5/2, 7/2^{+})$	C	J^{*} : L(t,p)=(2,3) on 1/2 target.
3733.2 4	(19/2,21/2) $5/2^+,7/2,0/2^-$	FG	J^{*} : 15/6 γ to (17/2 ⁺) 2157 ln (2 ⁺ Mg,X γ).
3703	3/2, $1/2, 9/29/2^+ 11/2+$	C	J : $L(l,p)=5.4$ of $1/2^{-1}$ target. $I^{\pi} \cdot I_{1}(l,p)=5$ on $1/2^{-1}$ target.
3839	$9/2^+$ 11/2 ⁺	C	J^{π} : L(t,p)=5 on 1/2 ⁻ target
3870	$3/2^{-},5/2^{-}$	c	J^{π} : L(t,p)=2 on 1/2 ⁻ target.
3938	$(9/2^+, 11/2^+)$	С	J^{π} : L(t,p)=(5) on 1/2 ⁻ target.
3966	$(3/2^{-}, 5/2^{-})$	С	J^{π} : L(t,p)=(2) on 1/2 ⁻ target.
4064.5 8		G	
4096	$(3/2^{-}, 5/2^{-})$	С	$J'': L(t,p)=(2) \text{ on } 1/2^{-1} \text{ target.}$
4147.04	(23/2,25/2")	FG	J [*] : (25/2) proposed In (* Mg,X γ), (25/2 *) In (* Se,p2n γ . 619 γ to (21/2*) 3528 and
			5/57 to $(19/2,21/2)$ 5508; 5547-0197 cascade from $(25/2^{-})$ 4481 through this level to $(21/2^{+})$ 3528 level cannot be stretched $\Omega = \Omega$ (see comment on $I(4/21)$ but for
			either ADO and DCO In $(^{82}$ Se $n^{2}n\gamma)$ favor Λ I=0.2
			(100, 100, 100, 100, 100, 100, 100, 100,
			Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹¹Y Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
4190.5 8		G	
4225	$(1/2^{-})$	С	Possibly an unresolved doublet.
			$\mathbf{J}^{\pi}: \mathbf{L}(\mathbf{t},\mathbf{p}) = (0).$
4451	$(3/2^{-}, 5/2^{-})$	С	J^{π} : L(t,p)=(2) on 1/2 ⁻ target.
4481.2 5	$(25/2^+)$	FG	J^{π} : 954 γ to (21/2 ⁺) 3528 In (⁸² Se,p2n γ). ΔJ =(0,2) 334 γ to 4147. (25/2 ⁺) is supported In
			$(^{24}Mg,X\gamma)$, where 954-keV crossover γ eliminates the possibility that each of the 334 γ and the 619 γ In that cascade to $(21/2^+)$ 3528 is $\Delta J=2$.
4611.4 8		G	
4808.5 6		FG	J ^{π} : possible Δ J=0,2 327 γ to (25/2 ⁺) 4481 In (²⁴ Mg,X γ), so J≤(29/2).
5574.8 7		G	J ^{π} : 1094 γ to (25/2 ⁺) 4481 In (²⁴ Mg,X γ), so J≤(29/2).
5778.1 10		G	J ^{π} : 1297 γ to (25/2 ⁺) 4481 In (²⁴ Mg,X γ) so J≤(29/2).
6503.1 9		G	
6896.1 11		G	

[†] Level energies with $\Delta E < 5$ keV are from least-squares fit to adopted $E\gamma$; the others are from (t,p), (t, α) and/or (p, α). If no uncertainty is given, this is because the authors did not state one.

[‡] Target spins are $1/2^-$ for (t,p) and 0⁺ for (p, α). J^{π} assignments from (p, α) are based on DWBA three-nucleon transfer calculations. # Band(A): $\Delta J=2$ sequence based on 9/2⁺ isomer. @ $\Delta J=2$ sequence based on 9/2⁺ isomer.

					Adop	ted Levels, (Jammas	(continued	<u>)</u>
						<u>γ(</u>	⁹¹ Y)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α &	Comments
555.58	9/2+	555.57 5	100	0	1/2-	M4		0.0531	B(M4)(W.u.)=1.6 8 calculated hindrance: 9 3 (2012Se10).
653.02 925.74	3/2 ⁻ 5/2 ⁻	652.9 2 272.6 6 925.8 2	100 6.8 <i>10</i> 100.0 <i>9</i>	$\begin{array}{c} 0\\653.02\\0\end{array}$	1/2 ⁻ 3/2 ⁻ 1/2 ⁻	[M1,E2] (E2)		0.021 8	Mult.: M1,E2 from $\alpha(K)$ exp in β^- decay; $\Delta J=2$ from level scheme
1186.88	(7/2) ⁻	261.2 2 533.9 <i>1</i> 631.3 <i>1</i>	80.7 <i>12</i> 13.9 <i>6</i> 100.0 <i>18</i>	925.74 653.02 555.58	5/2 ⁻ 3/2 ⁻ 9/2 ⁺				Seneme.
1305.39	(5/2)+	118.5 2 379.9 <i>1</i> 652.3 <i>3</i>	0.311 <i>14</i> 0.622 <i>14</i> 12.6 7	1186.88 925.74 653.02	(7/2) ⁻ 5/2 ⁻ 3/2 ⁻	[E1]		0.0653	
		749.8 1	100.0 7	555.58	9/2+	(E2)			Mult.: M1,E2 from $\alpha(K)$ exp in β^- decay; not M1 from level scheme.
1473.69	3/2-	1305.3 <i>I</i> 820.8 <i>2</i> 1473.8 <i>I</i>	0.071 <i>14</i> 96.0 <i>20</i> 100.0 <i>20</i>	$\begin{array}{c} 0\\653.02\\0\end{array}$	1/2 ⁻ 3/2 ⁻ 1/2 ⁻				
1485.09	$(13/2^+)$	929.5 [#] 2	100 [#]	555.58	9/2+	Q [#]			
1545.90	(5/2)-	359.1 <i>1</i> 620.1 <i>1</i> 892.9 <i>1</i> 1545 9 <i>1</i>	2.83 <i>19</i> 100.0 <i>19</i> 3.96 <i>19</i> 3.77 <i>19</i>	1186.88 925.74 653.02 0	$(7/2)^{-}$ $5/2^{-}$ $3/2^{-}$ $1/2^{-}$	M1(+E2)	≤2.1		δ : +0.05 7 or -1.81 +23-27 from $\gamma\gamma(\theta)$ in β^- decay.
1579.93	5/2+,7/2+	274.7 2 393.0 1 653 2	3.09 8 0.15 <i>1</i> 1.1 <i>4</i>	1305.39 1186.88 925.74	$(5/2)^+$ $(7/2)^-$ $5/2^-$	(M1)		0.01245	
1980.41	(5/2)-	1024.3 1 506.7 1 793.6 1 1054.6 1	100 19.4 <i>15</i> 28.4 <i>15</i> 100.0 <i>15</i>	555.58 1473.69 1186.88 925.74	9/2 ⁺ 3/2 ⁻ (7/2) ⁻ 5/2 ⁻ 2/2 ⁻	M1,E2			
2066.62	(5/2)+	486.5 2 520.8 3 593.1 1 761.4 1 879.7 1 1140.8 1 1413.4 1	8.2 3 3.4 3 9.6 3 58.7 10 19.1 3 13.0 3 100.0 14	1579.93 1545.90 1473.69 1305.39 1186.88 925.74 653.02	$5/2 + 5/2^+, 7/2^+ (5/2)^- 3/2^- (5/2)^+ (7/2)^- 5/2^- 3/2^- 3/2^-$				
2129.09 2157.1 2206.76	3/2,5/2,7/2 (17/2 ⁺) 5/2 ⁻	823.7 <i>1</i> 672.0 [#] 2 626.8 <i>1</i> 660.9 <i>1</i> 901.3 2	100 100 [#] 4.7 <i>4</i> 10.8 <i>4</i> 10.0 <i>4</i>	1305.39 1485.09 1579.93 1545.90 1305.39	$(5/2)^+$ $(13/2^+)$ $5/2^+,7/2^+$ $(5/2)^-$ $(5/2)^+$	Q [#]			

4

 $^{91}_{39}\mathrm{Y}_{52}\text{-}4$

$\gamma(^{91}Y)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
2206.76	5/2-	1280.9 5	100.0 11	925.74	5/2-		
		1553.6 3	1.8 4	653.02	3/2-		
2270.24	(5/2 + 7/2 -)	1651.4 5	31.2 4	555.58	$9/2^+$		
2279.34	$(3/2^{+}, 1/2^{-})$	973.97	25.0 21	025 74	$(3/2)^{-}$		
		1626.8.3	8321	653.02	$3/2^{-}$		
		1724.0 5	100.0 21	555.58	$9/2^+$		
2412.15	$(3/2^{-})$	1486.4 <i>1</i>	100 25	925.74	5/2-		
		2412.3 ^a 2	33 8	0	$1/2^{-}$		
2572.13?	$(5/2^+, 7/2, 9/2^-)$	992.2 ^a 1	100 8	1579.93	5/2+,7/2+		
		1646 ^{<i>a</i>} 1	6.9 8	925.74	5/2-		
		2016 ^{<i>a</i>} 1	9.2 23	555.58	9/2+		
2761.9	(15/2,17/2)	1276.8 7	100	1485.09	$(13/2^+)$		
3162.9	(15/2,17/2)	1677.7 [@] 7	100@	1485.09	$(13/2^+)$		
3527.7	$(21/2^+)$	1370.6 [#] 3	100#	2157.1	$(17/2^+)$	Q [#]	
3568.1	(19/2,21/2)	806.2 [@] 7	100 [@] 14	2761.9	(15/2,17/2)		
		1410.8 [@] 7	98 [@] 12	2157.1	$(17/2^+)$		
3733.2	(19/2,21/2)	570.3 [@] 7	88 [@] 11	3162.9	(15/2,17/2)		
		1576.3 [@] 4	100 [@] 14	2157.1	$(17/2^+)$		
4064.5		1907.3 [@] 9	$100^{@}$	2157.1	$(17/2^+)$		
4147.0	(23/2,25/2 ⁺)	413.8 2	44 4	3733.2	(19/2,21/2)		E_{γ} : from ¹² C(⁸² Se,p2n\gamma). L: from ¹⁷³ Yb(²⁴ Mg Xy); <54 from (⁸² Se p2ny)
		578 6 [@] 7	$30^{@} 4$	3568 1	(19/2, 21/2)		<i>iy</i> . nom <i>io</i> (<i>iigiiy)</i> , <i>ci</i> nom (<i>bcip2iy)</i> .
		619.2.3	100 7	3527.7	(1)/2,21/2) $(21/2^+)$		$F_{ex}L_{ex}$ from ¹² C(⁸² Se p2ny).
		017.2 5	100 /	552111	(21/2)		Mult.: ADO and DCO In $({}^{82}Se.p2n\gamma)$ favor $\Lambda J=0.2$.
4190.5		2033.3@ 9	$100^{@}$	2157.1	$(17/2^{+})$		
4481 2	$(25/2^{+})$	$334.2^{@}4$	$100^{@} 10$	4147.0	$(23/2 \ 25/2^+)$		other Ev: $334.7.2$ from ${}^{12}C({}^{82}Se p2nv)$
1101.2	(25/2)	551.2 7	100 10	1117.0	(23/2,23/2)		Mult : ADO and DCO In $(^{82}Se.p2n\gamma)$ favor AI=0.2.
		953.5@ 9	$10.9^{@} 20$	3527.7	$(21/2^{+})$		
4611.4		$420.8^{@}9$	$40^{@}$ 12	4190 5	(
101111		$546.8^{@}9$	$100^{@} 16$	4064 5			
4808 5		$377 4^{\#} 2$	100 [#]	4481.2	$(25/2^{+})$		Mult : possibly AI=0.2 γ from ${}^{12}C({}^{82}Se p2n\gamma)$
5574.8		$766 4^{@} 7$	$100^{@} 14$	4808 5	(23/2)		
5574.0		062.2°	$65^{(0)}$ 10	4611 4			
		903.2 - 9	$(1^{(0)} 10)$	4011.4	$(25/2^{+})$		
677 0 1		1093.7 9	$01 \sim 10$	4481.2	$(25/2^{+})$		
5778.1		1296.7 9	100	4481.2	(25/21)		
6503.1		928.5° 7	100 .	5574.8			

S

$\gamma(^{91}Y)$ (continued)

[†] From ⁹¹Sr β^- decay, except as noted. [‡] γ branching ratios for each level; from β^- decay, except as noted. [#] From ¹²C(⁸²Se,p2n γ). [@] From ¹⁷³Yb(²⁴Mg,X γ).

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{91}_{39} Y_{52}$

Adopted Levels, Gammas

Level Scheme (continued)

 $^{91}_{39}\mathrm{Y}_{52}\text{-}8$

From ENSDF

 $^{91}_{39}\mathrm{Y}_{52}\text{--}8$

 ∞

Adopted Levels, Gammas

 $^{91}_{39} Y_{52}$