92 Zr(d, 3 He),(t, α) 1968Pr02,1968Ha34

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013

Other: 1984Se13.

 (d_1^3He) : from 1968Pr02. E(d)=34.4~I MeV. $E-\Delta E$ semi telescope, FWHM=125 keV. $\theta(c.m.)=10^{\circ}$ to $\approx 70^{\circ}$.

(t, α): from 1968Ha34. E(t)=12.1 MeV. >95% enriched target. Multigap magnetic spectrograph. θ ≈15° to 60° or 80°.

Gross properties of (pol d, ³He) are investigated by 1984Se13.

⁹¹Y Levels

E(level) [†]	L [‡]	$C^2S^{\#}$	Comments
0	1	1.33	C^2S : $p_{1/2}$ orbital assumed.
			$C^2S(t,\alpha)$ normalized to $(d, ^3He)$ value (1.33).
550 [@] 10	4	1.09 <mark>&</mark>	$C^2S(t,\alpha)=2.17.$
653 [@] 10	1	0.84 <mark>&</mark>	$C^2S(t,\alpha)=0.92.$
922 10	3	1.50	$C^2S(t,\alpha)=1.17.$
1481 [@] <i>10</i>	1	1.90 <mark>&</mark>	$C^2S(t,\alpha)=2.21.$
1552 [@] 10	3	5.28 <mark>&</mark>	$C^2S(t,\alpha)=4.16$.
1974 <i>10</i>	(3)	0.21	L: $L(d,^3He)=(1)$; $L(t,\alpha)=(3)$, based on fewer data points, but consistent with Adopted Levels, Gammas.
			$C^2S(t,\alpha)=0.65 \text{ if } L=3.$
2058 25			E(level): not reported in $(d, {}^{3}He)$.
2159 25			E(level): not reported in (d, ³ He).
2205 25	3	1.21	$C^2S(t,\alpha) = 0.70$.
2475 25	1	0.38	$C^2S(t,\alpha) = 0.40.$
2569 15	1		L: from (t,α) ; level not reported in $(d,^3He)$.
			$C^2S(t,\alpha)=0.37.$

[†] From (t,α) (1968Ha34).

[‡] From DWBA analysis of $\sigma(\theta)$ by 1968Pr02 and 1968Ha34, except as noted.

[#] Values are $C^2S(d,^3He)$ from 1968Pr02. The authors estimate 15% experimental uncertainty and 30% normalization uncertainty from the model. $C^2S(d,^3He)$ values are given in the comments, and have been normalized to $C^2S(d,^3He)$ for g.s.; $g_{9/2}$, $f_{5/2}$, $p_{3/2}$ orbits have been assumed for L=4,3,1, respectively, except as noted.

[@] Not resolved in (d, ³He).

[&]amp; Strengths of the unresolved states deduced from fit to $\sigma(\theta)$ assuming two L values.