|                                                                                      | Туре                                                                                      | Author                                                                                                                  | History<br>Ci                                  | tation                                                                                 | Literature Cutoff Date                                                                                                        |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | Full Evaluation                                                                           | Coral M. Baglin                                                                                                         | NDS 114                                        | , 1293 (2013)                                                                          | 1-Sep-2013                                                                                                                    |
| $Q(\beta^{-}) = -7747 \ 3;$<br>$Q(\epsilon p) = -613 \ 4 \ (2)$<br>Additional inform | S(n)=13332.9 26; S(p)=310<br>2012Wa38).<br>nation 1.                                      | 2 4; Q(α)=-4538 7                                                                                                       | 2012Wa                                         | 38                                                                                     |                                                                                                                               |
| Theory (partial li<br>Nuclear structure<br>Compilation and<br>2001Cl06.              | ist):<br>e: 1983Am06, 1996Ru02 (sh<br>analysis of g.s. and SD ban                         | ell-model calculatior<br>d quadrupole momer                                                                             | ns).<br>nts:                                   |                                                                                        |                                                                                                                               |
|                                                                                      |                                                                                           |                                                                                                                         | <sup>91</sup> Tc Level                         | ls                                                                                     |                                                                                                                               |
| Although <sup>91</sup> Tc<br>transitions to<br>found, it is c                        | appears to decay with a sin $9/2^+$ and $1/2^-$ would occur oncluded that there exist a g | gle half-life, it is diff<br>with log $ft=6.1$ and<br>.s. and an isomeric s                                             | ficult to con $\log ft = 6.0$ , state, and be  | struct a decay<br>respectively. S<br>oth decay with                                    | scheme assuming a single parent since<br>since no strong isomeric transition was<br>almost the same half-life (see 1976De37). |
|                                                                                      |                                                                                           | Cross Re                                                                                                                | eference (XI                                   | REF) Flags                                                                             |                                                                                                                               |
|                                                                                      |                                                                                           | <b>A</b> ${}^{54}$ Fe( ${}^{40}$ Ca,<br><b>B</b> ${}^{91}$ Ru $\varepsilon$ dec<br><b>C</b> ${}^{58}$ Ni( ${}^{36}$ Ar, | 3pγ) D<br>cay E<br>3pγ)                        | <sup>58</sup> Ni( $^{40}$ Ca, $\alpha$ ;<br><sup>92</sup> Rh $\beta$ <sup>+</sup> p de | 3pγ)<br>ccay                                                                                                                  |
| E(level) <sup>†</sup>                                                                | $J^{\pi \ddagger} T_{1/2}^{\#} XI$                                                        | REF                                                                                                                     |                                                | (                                                                                      | Comments                                                                                                                      |
| 0                                                                                    | (9/2) <sup>+</sup> 3.14 min 2 AB                                                          | CDE $\%\varepsilon + \%\beta^+ = 10$<br>J <sup><math>\pi</math></sup> : log ft=5.2<br>Probable co                       | 0<br>2 for $\varepsilon$ decay<br>onfiguration | y to $9/2^+$ , 2451<br>= $(\pi g_{9/2})$ .                                             | 1 level in <sup>91</sup> Mo; shell-model systematics.                                                                         |

|                                   |                     |           |        | $T_{1/2}$ : from $\gamma$ (t) of $\gamma$ lines which could be assigned to the decay of the high-spin ${}^{91}$ Tc (1976De37). Other measurement: 3.12 min 5 (1974Ia01) from $\beta^+$ activity.                                                                                      |
|-----------------------------------|---------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 139.3 <mark>&amp;</mark> <i>3</i> | $(1/2)^{-}$         | 3.3 min 1 | С      | $\%\varepsilon + \%\beta^+ = 100; \%$ IT<1                                                                                                                                                                                                                                            |
|                                   |                     |           |        | J <sup><math>\pi</math></sup> : log <i>ft</i> =5.7 to 3/2 <sup>-</sup> , 1156 in <sup>91</sup> Mo; (HI,xn $\gamma$ ) systematics. Probable configuration is ( $\pi$ p <sub>1/2</sub> ) (1994Ru01).                                                                                    |
|                                   |                     |           |        | $T_{1/2}$ : from $\gamma(t)$ of $\gamma$ lines assigned to low-spin <sup>91</sup> Tc $\varepsilon$ decay (1976De37).                                                                                                                                                                  |
|                                   |                     |           |        | $\% \varepsilon + \% \beta^+$ : %IT<1 estimated in <sup>91</sup> Tc $\varepsilon$ decay (1975DeZX) based on absence of growth in decay curves.                                                                                                                                        |
| 394.51 9                          | $(7/2)^+$           |           | ABCDE  | $J^{\pi}$ : M1+E2 395 $\gamma$ to $(9/2)^+$ g.s. In (HI,xn $\gamma$ )-type reactions.                                                                                                                                                                                                 |
| 698.91 8                          | $(7/2^+)$           |           | В      | J <sup><math>\pi</math></sup> : gammas to (9/2) <sup>+</sup> and (7/2) <sup>+</sup> levels favoring J <sup><math>\pi</math></sup> =(5/2 <sup>+</sup> ,7/2,9/2,11/2 <sup>+</sup> ); stretched O 1138 $\gamma$ from (11/2 <sup>+</sup> ) 1533.                                          |
| 884.90 <sup>e</sup> 17            | $(5/2^{-})$         |           | С      | $J^{\pi}$ : (E2) 746 $\gamma$ to (1/2) <sup>-</sup> 139.                                                                                                                                                                                                                              |
| 892.90 8                          | $(13/2^+)$          |           | ABCDE  | $J^{\pi}$ : (E2) 893 $\gamma$ to (9/2) <sup>+</sup> g.s.                                                                                                                                                                                                                              |
| 905.3 <i>3</i>                    |                     |           | В      | $J^{\pi}$ : 905 $\gamma$ to (9/2) <sup>+</sup> g.s.                                                                                                                                                                                                                                   |
| 1097.10 7                         | $(11/2^+)$          |           | ABCDE  | $J^{\pi}$ : (M1(+E2)) 1097 $\gamma$ to (9/2) <sup>+</sup> g.s.; 702 $\gamma$ to (7/2) <sup>+</sup> 395.                                                                                                                                                                               |
| 1248.4                            |                     |           | В      | $J^{\pi}$ : 1248 $\gamma$ to $(9/2)^+$ g.s.                                                                                                                                                                                                                                           |
| 1339.1                            |                     |           | В      | $J^{\pi}$ : 945 $\gamma$ to (7/2) <sup>+</sup> 395.                                                                                                                                                                                                                                   |
| 1465.5                            |                     |           | В      | J <sup><math>\pi</math></sup> : 1466 $\gamma$ to (9/2) <sup>+</sup> g.s.; 1071 $\gamma$ to (7/2) <sup>+</sup> 395.                                                                                                                                                                    |
| 1532.62 10                        | $(11/2^+)$          |           | A CD   | J <sup>π</sup> : ΔJ=1 D+Q 1533γ to $(9/2)^+$ g.s.; ΔJ=1 411γ from $(13/2^-)$ 1943 level;<br>J <sup>π</sup> =(9/2 <sup>-</sup> ) suggested in ( <sup>40</sup> Ca,α3pγ) and in ( <sup>40</sup> Ca,3pγ) is not consistent with DCO ratios for 1533γ and 411γ in ( <sup>36</sup> Ar,3pγ). |
| 1555.80 <i>13</i><br>1766.3       | (9/2 <sup>-</sup> ) |           | C<br>B | $J^{\pi}$ : (E2) 671 $\gamma$ to (5/2 <sup>-</sup> ) 885 In ( <sup>36</sup> Ar,3p $\gamma$ ).                                                                                                                                                                                         |

Continued on next page (footnotes at end of table)

### <sup>91</sup>Tc Levels (continued)

| E(level) <sup>†</sup>                 | $J^{\pi \ddagger}$           | T <sub>1/2</sub> #      | XREF      | Comments                                                                                                                                                                                                                   |
|---------------------------------------|------------------------------|-------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1821.33 10                            | $(17/2^+)$                   |                         | A CD      | $J^{\pi}$ : (E2) 928 $\gamma$ to (13/2 <sup>+</sup> ) 893.                                                                                                                                                                 |
| 1943.10 9                             | $(13/2^{-})$                 |                         | A CD      | $J^{\pi}$ : (E2) $\Delta J=2$ 387 $\gamma$ to (9/2 <sup>-</sup> ) 1556 In ( <sup>36</sup> Ar,3p $\gamma$ ); (E1(+M2)) 411 $\gamma$ to (11/2 <sup>+</sup> ) 1533.                                                           |
| 1997.6                                |                              |                         | В         |                                                                                                                                                                                                                            |
| 2044.84 9                             | $(15/2^+)$                   |                         | A CD      | $J^{\pi}$ : (M1+E2) 224 $\gamma$ to (17/2 <sup>+</sup> ) 1821; (E2) $\Delta J$ =2 948 $\gamma$ to (11/2 <sup>+</sup> ) 1097.                                                                                               |
| 2137.17 <sup><i>u</i></sup> 13        | $(21/2^+)$                   | 1.85 ns <i>3</i>        | A CD      | $J^{\pi}$ : (E2) 316 $\gamma$ to (17/2 <sup>+</sup> ) 1821.<br>T <sub>1/2</sub> : Other value: 2.0 ns 3 from ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ).                                                                   |
| 2153.01 <sup>e</sup> 10               | (17/2 <sup>-</sup> )         | 1.07 ns 6               | A CD      | $J^{\pi^{+}}$ : (E1+M2) 108 $\gamma$ to (15/2 <sup>+</sup> ) 2045; (E1+M2) 332 $\gamma$ to (17/2 <sup>+</sup> ) 1821.<br>T <sub>1/2</sub> : Other value: 0.8 ns 2 from ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ).         |
| 2767.58 <sup>a</sup> 14               | $(23/2^+)$                   | <0.7 ps                 | A CD      | $J^{\pi}$ : (M1+E2) 630 $\gamma$ to (21/2 <sup>+</sup> ) 2137.                                                                                                                                                             |
| $2980.57^{f}$ 13                      | $(21/2^{-})$                 | 3.3 ps 7                | A CD      | $I^{\pi}$ : E2 AI=2.828 $\gamma$ to $(17/2^{-})$ 2153: 843 $\gamma$ to $(21/2^{+})$ 2137.                                                                                                                                  |
| 3135.90 <sup><i>a</i></sup> 15        | $(25/2^+)$                   | <0.7 ps                 | A CD      | $J^{\pi}$ : (M1+E2) 368 $\gamma$ to (23/2 <sup>+</sup> ) 2768: 998 $\gamma$ to (21/2 <sup>+</sup> ) 2137.                                                                                                                  |
| 3345.43 <sup>a</sup> 15               | $(25/2^+)$                   | 1.2 ps 9                | A CD      | $J^{\pi}$ : (M1(+E2)) 578 $\gamma$ to (23/2 <sup>+</sup> ) 2767; 210 $\gamma$ to (25/2 <sup>+</sup> ) 3135.                                                                                                                |
| 3804.37 <sup>f</sup> 15               | $(25/2^{-})$                 | 4.6 ps 5                | A CD      | $I^{\pi}$ : E2 AI=2.824 $\gamma$ to (21/2 <sup>-</sup> ) 2981: 1037 $\gamma$ to (23/2 <sup>+</sup> ) 2768.                                                                                                                 |
| 4080.36 16                            | $(25/2^{-})$                 | 3.5 ps 10               | A CD      | $J^{\pi}$ : (M1) 276 $\gamma$ to (25/2 <sup>-</sup> ) 3804; 1100 $\gamma$ to (21/2 <sup>-</sup> ) 2980; 944 $\gamma$ to (25/2 <sup>+</sup> ) 3136.                                                                         |
| 4119.30 <sup>b</sup> 16               | $(27/2^+)$                   | <1.4 ps                 | A CD      | $J^{\pi}$ : (M1+E2) 774 $\gamma$ to (25/2 <sup>+</sup> ) 3345; Q 1352 $\gamma$ to (23/2 <sup>+</sup> ) 2767.                                                                                                               |
| 4354.52 <sup>b</sup> 15               | $(29/2^+)$                   | 1.5 ps 4                | A CD      | $J^{\pi}$ : (M1+E2) 235 $\gamma$ to (27/2 <sup>+</sup> ) 4119; E2 1009 $\gamma$ to (25/2 <sup>+</sup> ) 3345.                                                                                                              |
| 4594.89 16                            | $(27/2^{-})$                 | <0.7 ps                 | A CD      | $J^{\pi}$ : (M1(+E2)) 515 $\gamma$ to (25/2 <sup>-</sup> ) 4080.                                                                                                                                                           |
| 4703.13 <sup>f</sup> 17               | $(29/2^{-})$                 | -                       | A CD      | $J^{\pi}$ : (E2) $\Delta J=2$ 899 $\gamma$ to (25/2 <sup>-</sup> ) 3804.                                                                                                                                                   |
| 4750.22 <sup>b</sup> 18               | $(29/2^+)$                   |                         | CD        | $I^{\pi}$ : 1614y to (25/2 <sup>+</sup> ) 3136; 630y to (27/2 <sup>+</sup> ) 4119; 396y to (29/2 <sup>+</sup> ) 4355                                                                                                       |
| 493573f17                             | $(29/2^{-})$                 | <0.7 ps                 | A CD      | $I^{\pi}$ : (M1(+E2)) 341 $\gamma$ to (27/2 <sup>-</sup> ) 4595: 232 $\gamma$ to (29/2 <sup>-</sup> ) 4703                                                                                                                 |
| 5077 93 f 18                          | $(2)/2^{-})$                 | 33  ps                  | A CD      | $I^{\pi}$ : (M1+F2) 142 $\gamma$ to (29/2 <sup>-</sup> ) 4936                                                                                                                                                              |
| 5000 56 <sup>b</sup> 17               | $(31/2^+)$                   | 5.5 ps 5                |           | $I^{\pi}$ : (M1+E2) 340 <sub>2</sub> /to (20/2 <sup>+</sup> ) 4750: 072 <sub>2</sub> /to (27/2 <sup>+</sup> ) 4110                                                                                                         |
| 5090.50 17                            | (31/2)                       | <1.4 ps                 |           | <b>J</b> . (W11+E2) 5407 to $(27/2^+)$ 4750, 5727 to $(27/2^+)$ 4115.<br>$\overline{M}_{+}$ (M1+E2) 178. to $(21/2^+)$ 5001. E2 014. to $(20/2^+)$ 4255                                                                    |
| 5382.90 19                            | $(33/2^{+})$<br>$(31/2^{+})$ | 0.4 ps 4                | CD CD     | $J^{\pi}$ : (M1(+E2)) 1787 to (51/2) 5091; E2 9147 to (29/2) 4355.<br>$J^{\pi}$ : (M1(+E2)) 10287 to (29/2 <sup>+</sup> ) 4355.                                                                                            |
| 5567.13 <sup>J</sup> 19<br>5776.12 19 | $(33/2^{-})$<br>$(33/2^{+})$ | <0.7 ps                 | A CD<br>C | $J^{\pi}$ : (M1(+E2)) 489 $\gamma$ to (31/2 <sup>-</sup> ) 5078; 864 $\gamma$ to (29/2 <sup>-</sup> ) 4703.<br>$J^{\pi}$ : (M1(+E2)) 686 $\gamma$ to (31/2 <sup>+</sup> ) 5090; 393 $\gamma$ to (31/2 <sup>+</sup> ) 5383. |
| 5933.67 <sup>b</sup> 18               | $(35/2^+)$                   | 0.49 ps +35-21          | A CD      | $J^{\pi}$ : (M1(+E2)) 666 $\gamma$ to (33/2 <sup>+</sup> ) 5268; 158 $\gamma$ to (33/2 <sup>+</sup> ) 5776.                                                                                                                |
| 6158.73 <mark>8</mark> 20             | $(35/2^{-})$                 | 1.46 ps 21              | A CD      | $J^{\pi}$ : (M1(+E2)) 592 $\gamma$ to (33/2 <sup>-</sup> ) 5567; E2 1081 $\gamma$ to (31/2 <sup>-</sup> ) 5078.                                                                                                            |
| 6192.16 18                            | $(33/2^+)$                   |                         | CD        | $J^{\pi}: (M1(+E2)) 809\gamma \text{ to } (31/2^+) 5383; (M1(+E2)) 924\gamma \text{ to } (33/2^+) 5268; (E2) 1837\gamma \text{ to } (29/2^+) 4355.$                                                                        |
| 6452.35 <sup>b</sup> 21               | $(37/2^+)$                   | 0.8 <sup>@</sup> ps 6   | CD        | $J^{\pi}$ : (M1(+E2)) 519 $\gamma$ to (35/2 <sup>+</sup> ) 5934.                                                                                                                                                           |
| 6615.81 <sup>g</sup> 22<br>6690.8 7   | (37/2 <sup>-</sup> )         | 0.83 <sup>@</sup> ps 14 | A CD<br>C | $J^{\pi}$ : (M1(+E2)) 457 $\gamma$ to (35/2 <sup>-</sup> ) 6159; 1049 $\gamma$ to (33/2 <sup>-</sup> ) 5567.                                                                                                               |
| 6843.07 19                            | $(35/2^+)$                   |                         | CD        | $J^{\pi}$ : (M1(+E2)) 651 $\gamma$ to (33/2 <sup>+</sup> ) 6192; 1575 $\gamma$ to (33/2 <sup>+</sup> ) 5268.                                                                                                               |
| 7292.85 <mark>b</mark> 20             | $(37/2^+)$                   |                         | CD        | $J^{\pi}$ : (M1(+E2)) 450y to (35/2 <sup>+</sup> ) 6843; 1100y to (33/2 <sup>+</sup> ) 6192.                                                                                                                               |
| 7505.03 <sup>g</sup> 23               | $(39/2^{-})$                 |                         | A CD      | $J^{\pi}$ : (M1+E2) 889 $\gamma$ to (37/2 <sup>-</sup> ) 6616; 1346 $\gamma$ to (35/2 <sup>-</sup> ) 6159.                                                                                                                 |
| 7667.99 <sup>C</sup> 22               | $(37/2^+)$                   |                         | CD        | $J^{\pi}$ : 1476 $\gamma$ to (33/2 <sup>+</sup> ) 6192.                                                                                                                                                                    |
| 7716.17 <mark>8</mark> 23<br>7992.7 4 | $(41/2^{-})$                 | 0.83 <sup>@</sup> ps 21 | A CD      | $J^{\pi}$ : (M1+E2) 211 $\gamma$ to (39/2 <sup>-</sup> ) 7505; stretched E2 1100 $\gamma$ to (37/2 <sup>-</sup> ) 6616.                                                                                                    |
| 8141.22 <sup><i>c</i></sup> 21        | $(39/2^+)$                   |                         | CD        | $J^{\pi}$ : (M1(+E2)) 473 $\gamma$ to (37/2 <sup>+</sup> ) 7668: stretched O 2208 $\gamma$ to (35/2 <sup>+</sup> ) 5934.                                                                                                   |
| 8276.58 <sup>C</sup> 23               | $(39/2^+)$                   |                         | CD        | $J^{\pi}$ : 984 $\gamma$ to (37/2 <sup>+</sup> ) 7293; 2343 $\gamma$ to (35/2 <sup>+</sup> ) 5934.                                                                                                                         |
| 8392.3 <sup>c</sup> 11<br>8559.0 5    | $(41/2^+)$                   | 0.37 ps 4               | CD<br>C   | $J^{\pi}$ : E2 $\Delta J=2$ 1940 $\gamma$ to (37/2 <sup>+</sup> ) 6455.                                                                                                                                                    |
| 8835.89 <sup>c</sup> 22               | $(41/2^+)$                   | 4.0 ps 4                | CD        | J <sup>π</sup> : (M1(+E2)) 559γ to (39/2 <sup>+</sup> ) 8277; 1543γ to (37/2 <sup>+</sup> ) 7293; Q ΔJ=2 2384γ to (37/2 <sup>+</sup> ) 6452.                                                                               |
| 9008.7 11                             | $(41/2^+)$                   |                         | D         | $J^{\pi}$ : 2556 $\gamma$ to (37/2 <sup>+</sup> ) 6453.                                                                                                                                                                    |
| 9299.78 <sup>°</sup> 24               | $(43/2^+)$                   | 0.9 ps 4                | CD        | J <sup><math>\pi</math></sup> : (M1+E2) 464 $\gamma$ to (41/2 <sup>+</sup> ) 8836; 1159 $\gamma$ to (39/2 <sup>+</sup> ) 8141.                                                                                             |
| 9717.0 <mark>8</mark> 21              | $(45/2^{-})$                 |                         | CD        | $J^{\pi}$ : (E2) $\Delta J=2\ 2001\gamma$ to $(41/2^{-})\ 7716$ .                                                                                                                                                          |

Continued on next page (footnotes at end of table)

### <sup>91</sup>Tc Levels (continued)

| E(level) <sup>†</sup>           | J <sup>π</sup> ‡                        | $T_{1/2}^{\#}$         | XREF | Comments                                                                                                                                                                                      |
|---------------------------------|-----------------------------------------|------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10166.7 <sup>d</sup> 17         | $(45/2^+)$                              | 0.44 <sup>@</sup> ps 3 | CD   | $J^{\pi}$ : stretched E2 1774 $\gamma$ to (41/2 <sup>+</sup> ) 8392.                                                                                                                          |
| 10388.0 11                      | (43/2 <sup>-</sup> ,45/2 <sup>-</sup> ) |                        | D    | J <sup><math>\pi</math></sup> : 2672 $\gamma$ to (41/2 <sup>-</sup> ) 7716 In ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ).                                                                     |
| 10505.4 <sup>d</sup> 3          | $(47/2^+)$                              | 1.8 <sup>@</sup> ps 4  | CD   | $J^{\pi}$ : stretched E2 1206 $\gamma$ to (43/2 <sup>+</sup> ) 9300.                                                                                                                          |
| 10843.5 11                      | $(43/2^-, 45/2^-)$                      | -                      | D    | $J^{\pi}$ : 3127 $\gamma$ to (41/2 <sup>-</sup> ) 7716.                                                                                                                                       |
| 12172.5 23                      | (47/2 <sup>-</sup> ,49/2 <sup>-</sup> ) |                        | D    | J <sup><math>\pi</math></sup> : 2456 $\gamma$ to (45/2 <sup>-</sup> ) 9717 In ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ).                                                                     |
| 12225.1 <sup>d</sup> 24         |                                         |                        | CD   | $J^{\pi}$ : 2058 $\gamma$ to (45/2 <sup>+</sup> ) 10167 In ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ).                                                                                        |
| $\mathbf{x}^{\boldsymbol{h}}$   | J≈(51/2)                                |                        | D    | Additional information 2.                                                                                                                                                                     |
|                                 |                                         |                        |      | E(level): no connecting transitions to normal deformed structures have been found.                                                                                                            |
|                                 |                                         |                        |      | $J^{\pi}$ : from coincidence observation of SD band transitions with $1206\gamma$ from 10502, $(47/2^+)$ level and assuming an average spin cost of 2 units to connect to the $47/2^+$ level. |
| 1348.4+x <b>h</b> 3             | J+2                                     |                        | D    |                                                                                                                                                                                               |
| 2807.9+x <sup>h</sup> 3         | J+4                                     |                        | D    |                                                                                                                                                                                               |
| 4377.7+x <sup>h</sup> 4         | J+6                                     |                        | D    |                                                                                                                                                                                               |
| 6059.7+x <sup>h</sup> 4         | J+8                                     |                        | D    |                                                                                                                                                                                               |
| 7852.3+x <sup>h</sup> 4         | J+10                                    |                        | D    |                                                                                                                                                                                               |
| 9756.2+x <sup>h</sup> 5         | J+12                                    |                        | D    |                                                                                                                                                                                               |
| 11771.0+x <sup><i>h</i></sup> 5 | J+14                                    |                        | D    |                                                                                                                                                                                               |
| 13890.3+x <sup>h</sup> 5        | J+16                                    |                        | D    |                                                                                                                                                                                               |
| 16114.4+x <sup>h</sup> 6        | J+18                                    |                        | D    |                                                                                                                                                                                               |
| 18440.4+x <sup>h</sup> 7        | J+20                                    |                        | D    |                                                                                                                                                                                               |
| 20861.9+x <sup>h</sup> 8        | J+22                                    |                        | D    |                                                                                                                                                                                               |

<sup>†</sup> From least-squares fit to adopted  $E\gamma$ .

<sup>‡</sup> J<sup> $\pi$ </sup> values are those proposed in (<sup>36</sup>Ar,3p $\gamma$ ) (1994Ru01), based on DCO ratios and  $\gamma$  cascade patterns. In many instances, these J<sup> $\pi$ </sup> are supported by  $\gamma$  anisotropy ratios or excit data from other heavy-ion induced reactions. Relevant transition multipolarity and final level information is given In comments on individual levels. SD band J<sup> $\pi$ </sup> values are adopted from (<sup>40</sup>Ca, $\alpha$ 3p $\gamma$ ).

- <sup>#</sup> From  $({}^{36}\text{Ar}, 3p\gamma)$ , unless noted otherwise.
- <sup>@</sup> Effective  $T_{1/2}$ ; not corrected for feeding.

 $^{\& 91}$ Tc  $\varepsilon$  decay studies could not establish which of the observed 3.3 min and 3.14 min states is the g.s., but systematics suggest that the 3.3 min (1/2<sup>-</sup>) level is the isomer; 1976De37 estimate E(isomer)<350 based on %IT<1 for the anticipated M4 IT. Although the authors of the ( $^{36}$ Ar,3p $\gamma$ ) study do not comment, the evaluator presumes that the (1/2<sup>-</sup>) 139.3 keV state they report is, in fact, the isomeric state.

- <sup>*a*</sup> Band(A): Seniority=3 states. (1994Ru01). Probable dominant configuration= $((\pi g_{9/2})(\nu g_{9/2})^{-2})$ .
- <sup>b</sup> Band(B): Seniority=3 states. (1994Ru01). Probable dominant configuration= $((\pi g_{9/2})^3 (\nu g_{9/2})^{-2})$ .
- <sup>c</sup> Band(C): Seniority=3 states. (1994Ru01).
- <sup>d</sup> Band(D): Seniority=3 states. (1994Ru01).
- <sup>*e*</sup> Band(E): Seniority=3 states. (1994Ru01). Probable dominant configuration= $((\pi p_{1/2})(\pi g_{9/2})^2)$ .
- <sup>f</sup> Band(F): Seniority=3 states. (1994Ru01).
- <sup>g</sup> Band(G): Seniority=3 states. (1994Ru01).
- <sup>*h*</sup> Band(H): SD band (2000Id01,2003La24). Q(intrinsic)=6.7 +13-8 (2003La24), 8.1 +19-14 (2000Id01). Population≈1% of the ( $^{40}$ Ca, $\alpha$ 3py), E=185 MeV reaction channel. Configuration: comparison of experimental moments of inertia with calculations shows that it is not  $\pi$ 5<sup>1</sup>v5<sup>2</sup> As proposed for <sup>89</sup>Tc. These calculations seem to agree with  $\pi$ 5<sup>2</sup>v5<sup>4</sup> (2000Id01). 2003La24 propose v5<sup>3</sup> $\pi$ 5<sup>2</sup> or v5<sup>4</sup> $\pi$ 5<sup>2</sup>.

|                        |                                    |                             |                             |                  | I                                   | Adopted Level      | s, Gammas (co              | ntinued)     |                                                                                                                           |
|------------------------|------------------------------------|-----------------------------|-----------------------------|------------------|-------------------------------------|--------------------|----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|
|                        |                                    |                             |                             |                  |                                     |                    | $\gamma(^{91}\mathrm{Tc})$ |              |                                                                                                                           |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                 | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$     | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$                | Mult. <sup>#</sup> | $\delta^{@}$               | $\alpha^{e}$ | Comments                                                                                                                  |
| 394.51                 | $(7/2)^+$                          | 394.5 1                     | 100                         | 0                | $(9/2)^+$                           | M1+E2 <sup>b</sup> | -0.7 +4-13                 |              |                                                                                                                           |
| 698.91                 | $(7/2^+)$                          | 304.1 <mark>&amp;</mark> 1  | 52 <sup>&amp;</sup> 10      | 394.51           | $(7/2)^+$                           |                    |                            |              |                                                                                                                           |
|                        |                                    | 699.1 <mark>&amp;</mark> 1  | 100 <sup>&amp;</sup> 24     | 0                | $(9/2)^+$                           |                    |                            |              |                                                                                                                           |
| 884.90                 | $(5/2^{-})$                        | 745.6 2                     | 100                         | 139.3            | $(1/2)^{-}$                         | (E2)               |                            |              |                                                                                                                           |
| 892.90                 | $(13/2^{+})$                       | 892.9 1                     | 100                         | 0                | (9/2) <sup>+</sup>                  | (E2)               |                            |              |                                                                                                                           |
| 905.3                  | $(11/2^{+})$                       | $905.3^{\circ\circ}$ 3      | 22.6.7                      | 0                | $(9/2)^{+}$                         |                    |                            |              | Other Let 25.8 in $(40C_{0.2}, 2m_{0.1})$ , 15.0, 16 at 65° in                                                            |
| 1097.10                | $(11/2^{+})$                       | 204.5 1                     | 22.0 /                      | 892.90           | $(13/2^{+})$                        |                    |                            |              | Other $1\gamma$ : 25 8 in ("Ca, 5p $\gamma$ ); 15.0 70 at 65 in ( <sup>36</sup> Ar 3p $\gamma$ ); 11.6 in s decay         |
|                        |                                    | 702.1 3                     | 5.3 <sup>a</sup> 21         | 394.51           | $(7/2)^+$                           |                    |                            |              | ( <i>M</i> , <i>S</i> <b>P</b> <i>Y</i> ), 11 0 m <i>e</i> deedy.                                                         |
|                        |                                    | 1097.1 <i>1</i>             | 100.0 19                    | 0                | $(9/2)^+$                           | (M1(+E2))          | +0.04 7                    |              |                                                                                                                           |
| 1248.4                 |                                    | 1248.4 <mark>&amp;</mark> 1 | 100 <sup>&amp;</sup>        | 0                | $(9/2)^+$                           |                    |                            |              |                                                                                                                           |
| 1339.1                 |                                    | 944.7 <mark>&amp;</mark> 1  | 100                         | 394.51           | $(7/2)^+$                           |                    |                            |              |                                                                                                                           |
| 1465.5                 |                                    | 1070.7 <mark>&amp;</mark> 1 | 100 <sup>&amp;</sup> 16     | 394.51           | $(7/2)^+$                           |                    |                            |              |                                                                                                                           |
|                        |                                    | 1465.5 <sup>&amp;</sup> 3   | 53 <sup>&amp;</sup> 16      | 0                | $(9/2)^+$                           |                    |                            |              |                                                                                                                           |
| 1532.62                | $(11/2^+)$                         | 435.4 2                     | 12 <sup><i>a</i></sup> 4    | 1097.10          | $(11/2^+)$                          | h                  |                            |              | 26                                                                                                                        |
|                        |                                    | 1138.3 2                    | 47.8 22                     | 394.51           | $(7/2)^+$                           | $Q^{\nu}$          | 110                        |              | Other I $\gamma$ : 33 4 at 65° in ( <sup>30</sup> Ar, 3p $\gamma$ ).                                                      |
|                        |                                    | 1352.0 2                    | 100 4                       | 0                | (9/2)                               | (M1+E2)            | -1.1 9                     |              | E1+M2.                                                                                                                    |
| 1555.80                | $(9/2^{-})$                        | 670.9 <i>1</i>              | 100 <sup>a</sup> 33         | 884.90           | $(5/2^{-})$                         | (E2)               |                            |              |                                                                                                                           |
|                        |                                    | 1555.9 4                    | 100 <sup>a</sup> 13         | 0                | $(9/2)^+$                           |                    |                            |              |                                                                                                                           |
| 1766.3                 |                                    | 669.6 <sup>&amp;</sup> 2    | 100 <sup>&amp;</sup> 31     | 1097.10          | $(11/2^+)$                          |                    |                            |              |                                                                                                                           |
| 1001 00                | (15/0+)                            | 1371.9 2                    | 72 <sup>&amp;</sup> 26      | 394.51           | $(7/2)^+$                           |                    |                            |              |                                                                                                                           |
| 1821.33                | $(1^{-}/2^{+})$<br>$(1^{-}/2^{-})$ | 928.4 I<br>387 3 1          | 100<br>30 <mark>0</mark> 3  | 892.90           | $(13/2^{+})$<br>$(0/2^{-})$         | (E2)<br>(E2)       |                            | 0.01104      |                                                                                                                           |
| 1945.10                | (15/2)                             | 410 5 1                     | 97 6 <i>24</i>              | 1532.62          | $(\frac{9}{2})$<br>$(\frac{11}{2})$ | (E2)<br>(E1(+M2))  | -0.01.8                    | 0.01104      | Other Iv: 100 4 at $65^{\circ}$ in $({}^{36}$ Ar $3nv)$                                                                   |
|                        |                                    | 846.1 <i>I</i>              | 100.0 24                    | 1097.10          | $(11/2^+)$                          | (E1(+M2))          | +0.06 7                    |              | o alor 17. 100 7 al 00 m ( 11,007).                                                                                       |
|                        |                                    | 1050.0 2                    | 30.6 <sup><i>a</i></sup> 20 | 892.90           | $(13/2^+)$                          |                    |                            |              | Other I $\gamma$ : <55 in ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ), 33 <i>13</i> In ( <sup>40</sup> Ca,3p $\gamma$ ).   |
| 1997.6                 |                                    | 657.6 <sup>&amp;</sup> 2    | 76 <sup>&amp;</sup> 24      | 1339.1           |                                     |                    |                            |              |                                                                                                                           |
|                        |                                    | 1997.6 <mark>&amp;</mark> 9 | 100 <sup>&amp;</sup> 23     | 0                | $(9/2)^+$                           |                    |                            |              |                                                                                                                           |
| 2044.84                | $(15/2^+)$                         | 223.6 1                     | 82.6 22                     | 1821.33          | $(17/2^+)$                          | (M1+E2)            |                            | 0.051 20     | Other I <sub><math>\gamma</math></sub> : 50 3 at 65° in ( <sup>36</sup> Ar,3p $\gamma$ ); 63 10 in ( <sup>40</sup> Co 3m) |
|                        |                                    | 947.7 1                     | 68.5.22                     | 1097 10          | $(11/2^+)$                          | (E2)               |                            |              | Other Iv: 74 7 at $65^{\circ}$ in $({}^{36}\text{Ar} 3\text{pv})$                                                         |
|                        |                                    | 1151.9 1                    | 100.0 22                    | 892.90           | $(13/2^+)$                          | (M1+E2)            | -0.25 6                    |              | Mult.: D+Q from DCO ratio; $\delta$ somewhat large for                                                                    |
|                        |                                    |                             |                             |                  |                                     |                    |                            |              | E1+M2.                                                                                                                    |
| 2137.17                | $(21/2^+)$                         | 315.8 <i>1</i>              | 100                         | 1821.33          | $(17/2^+)$                          | (E2)               |                            | 0.0215       | B(E2)(W.u.)=3.92 7                                                                                                        |
|                        |                                    |                             |                             |                  |                                     |                    |                            |              | Mult.: probably Q from anisotropy ratio in ( $^{40}Ca, \alpha 3p\gamma$ );                                                |
| 2153.01                | $(17/2^{-})$                       | 108.2 1                     | 100.0 9                     | 2044.84          | $(15/2^+)$                          | (E1+M2)            |                            | 1.1 11       | D OI E2 HOIII KUL.                                                                                                        |
|                        | ( ) ( )                            | 210.0 1                     | <85                         | 1943.10          | $(13/2^{-})$                        | E2 <sup>b</sup>    |                            | 0.0875       | B(E2)(W.u.)=8+9-8                                                                                                         |
|                        |                                    |                             |                             | .,               | ()                                  | _                  |                            |              |                                                                                                                           |

4

From ENSDF

|                                         |                                              |                                                       |                                                                                        | -                                                                                                                           | Adopted Level             | s, Gammas    | (continued)               |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-----------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\gamma$ <sup>(91</sup> Tc) (continued) |                                              |                                                       |                                                                                        |                                                                                                                             |                           |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| E <sub>i</sub> (level)                  | $\mathbf{J}_i^\pi$                           | $E_{\gamma}^{\dagger}$                                | ${\rm I}_{\gamma}^{\ddagger}$                                                          | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                                                                    | Mult. <sup>#</sup>        | $\delta^{@}$ | $\alpha^{\boldsymbol{e}}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 2153.01                                 | (17/2 <sup>-</sup> )                         | 331.6 <i>1</i>                                        | 28.5 6                                                                                 | 1821.33 (17/2+)                                                                                                             | (E1(+M2))                 | +0.2 6       |                           | Other Iy: 128 5 at 65° in ( <sup>36</sup> Ar,3py); 109 20 in<br>( <sup>40</sup> Ca,3py).<br>Mult.: $\Delta \pi$ =No from level scheme.<br>B(E1)(W.u.)<8×10 <sup>-7</sup> 4; B(M2)(W.u.)=1.4 +80-14<br>Mult.: DCO ratio consistent with Q ( $\Delta$ J=2) or D<br>( $\Delta$ J=0); 1994Ru01 assume the latter.<br>Other tay 50.2 at 65° in ( <sup>36</sup> Ar,2pr)) 61.0 in ( <sup>40</sup> Ca,2pr) |  |  |  |
| 2767.58                                 | $(23/2^+)$                                   | 630.3 1                                               | 100                                                                                    | 2137.17 (21/2+)                                                                                                             | (M1+E2)                   | -0.05 2      |                           | B(M1)(W.u.)>0.13; B(E2)(W.u.)>0.17                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 2980.57                                 | (21/2 <sup>-</sup> )                         | 827.6 <i>1</i><br>843.3 <i>4</i>                      | $100^{a} 3 0.80^{a} 20$                                                                | $\begin{array}{c} 2153.01 & (17/2^{-}) \\ 2137.17 & (21/2^{+}) \end{array}$                                                 | E2                        |              |                           | B(E2)(W.u.)=18 4                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 3135.90                                 | $(25/2^+)$                                   | 368.3 <i>1</i><br>998.5 2                             | $100^{a} 3$<br>$4.7^{a} 7$<br>$0.7^{a} 10$                                             | $\begin{array}{cccc} 2767.58 & (23/2^{+}) \\ 2137.17 & (21/2^{+}) \\ 2125.00 & (25/2^{+}) \end{array}$                      | (M1+E2)<br>[E2]           | -0.03 1      |                           | B(M1)(W.u.)>0.60; B(E2)(W.u.)>1.4<br>B(E2)(W.u.)>1.5                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 5545.45                                 | (25/2*)                                      | 577.7 <i>1</i><br>1208.4 <i>1</i>                     | 9.74 10<br>100.0 <i>17</i><br>36.7 <i>12</i>                                           | 3133.90 (25/2 <sup>+</sup> )<br>2767.58 (23/2 <sup>+</sup> )<br>2137.17 (21/2 <sup>+</sup> )                                | (M1(+E2))<br>E2           | -0.04 4      |                           | B(M1)(W.u.)=0.06 5; B(E2)(W.u.)=0.3 +7-3<br>B(E2)(W.u.)=1.9 15<br>Other I $\gamma$ : 30.8 26 at 65° in ( <sup>36</sup> Ar,3p $\gamma$ ); 63 10 in ( <sup>40</sup> Ca 3m $\gamma$ )                                                                                                                                                                                                                 |  |  |  |
| 3804.37                                 | (25/2-)                                      | 823.8 <i>1</i><br>1036.9 2                            | 100.0 8<br>2.94 20                                                                     | 2980.57 $(21/2^{-})$<br>2767.58 $(23/2^{+})$                                                                                | E2                        |              |                           | B(E2)(W.u.)=13.0 15                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4080.36                                 | (25/2 <sup>-</sup> )                         | 276.0 1                                               | 100 <sup><i>a</i></sup> 8                                                              | 3804.37 (25/2 <sup>-</sup> )                                                                                                | (M1)                      |              | 0.0184                    | B(M1)(W.u.)=0.20 7<br>Mult.: DCO ratio consistent with Q (ΔJ=2) or D<br>(ΔJ=0); 1994Ru01 assume the latter.                                                                                                                                                                                                                                                                                        |  |  |  |
| 4119.30                                 | (27/2 <sup>+</sup> )                         | 944.2 2<br>1100.0 3<br>774.0 1                        | $25^{a} 6$<br>$25^{a} 11$<br>100.0 11                                                  | $\begin{array}{c} 3135.90  (25/2^+) \\ 2980.57  (21/2^-) \\ 3345.43  (25/2^+) \\ 2767.59  (22/2^+) \end{array}$             | [E2]<br>(M1+E2)           | -0.07 4      |                           | B(E2)(W.u.)=0.7 <i>4</i><br>B(M1)(W.u.)>0.032                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 4354.52                                 | (29/2+)                                      | 235.3 <i>1</i>                                        | 5.0 6<br>43.5 6                                                                        | $\begin{array}{c} 2767.58 & (23/2^+) \\ 4119.30 & (27/2^+) \end{array}$                                                     | Q <sup>o</sup><br>(M1+E2) |              | 0.043 16                  | Other I $\gamma$ : 48.0 20 at 65° in ( <sup>36</sup> Ar,3p $\gamma$ ); 46 5 in ( <sup>40</sup> Co 2ro)                                                                                                                                                                                                                                                                                             |  |  |  |
|                                         |                                              | 1009.1 <i>1</i>                                       | 9.2 3                                                                                  | 3345.43 (25/2 <sup>+</sup> )                                                                                                | E2                        |              |                           | (Ca, spy).<br>B(E2)(W.u.)=0.88 24<br>Other Ly: 7.7.6 at 65° in ( <sup>36</sup> Ar 3py)                                                                                                                                                                                                                                                                                                             |  |  |  |
| 4594.89                                 | (27/2 <sup>-</sup> )                         | 1218.5 <i>I</i><br>514.5 <i>I</i>                     | 100.0 <i>11</i><br>50.7 <i>11</i>                                                      | 3135.90 (25/2 <sup>+</sup> )<br>4080.36 (25/2 <sup>-</sup> )                                                                | E2<br>(M1(+E2))           | -0.04 8      |                           | B(E2)(W.u.)=3.7 10<br>B(M1)(W.u.)>0.076<br>Other Iy: 31.6 14 at 65° in ( <sup>36</sup> Ar,3py); 65 20 in $\binom{40}{7}$ Ca 3my)                                                                                                                                                                                                                                                                   |  |  |  |
|                                         |                                              | 790.6 <i>1</i><br>1459.2 7                            | $100.0 \ 14$<br>$2.4^{a} \ 10$                                                         | $3804.37 (25/2^{-})$<br>$3135.90 (25/2^{+})$                                                                                | (M1(+E2))                 | -0.04 7      |                           | B(M1)(W.u.)>0.041                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 4703.13<br>4750.22                      | (29/2 <sup>-</sup> )<br>(29/2 <sup>+</sup> ) | 898.7 <i>I</i><br>395.7 2<br>630 <i>I</i><br>1613 8 3 | $ \begin{array}{c} 100 \\ 58^{a} \ 17 \\ \approx 125^{a} \\ 100^{a} \ 33 \end{array} $ | $\begin{array}{c} 3804.37 & (25/2^{-}) \\ 4354.52 & (29/2^{+}) \\ 4119.30 & (27/2^{+}) \\ 3135.90 & (25/2^{+}) \end{array}$ | (E2)                      |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 4935.73                                 | (29/2 <sup>-</sup> )                         | 232.4 2<br>340.9 <i>1</i>                             | $1.5^{a} 4$<br>$100^{a} 5$                                                             | 4703.13 (29/2 <sup>-</sup> )<br>4594.89 (27/2 <sup>-</sup> )                                                                | (M1(+E2))                 | -0.05 7      | 0.01081 17                | B(M1)(W.u.)>0.77                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

S

From ENSDF

н

### $\gamma(^{91}$ Tc) (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{\ddagger}$   | $\mathbf{E}_{f}$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>                 | $\delta^{@}$ | $\alpha^{e}$ | Comments                                                                                                |
|---------------|----------------------|------------------------------|---------------------------|--------------------|----------------------|------------------------------------|--------------|--------------|---------------------------------------------------------------------------------------------------------|
| 5077.93       | $(31/2^{-})$         | 142.2 1                      | 100.0 9                   | 4935.73            | $(29/2^{-})$         | (M1 + E2)                          |              | 0.23 13      |                                                                                                         |
| 001100        | (01/2))              | 374.8 1                      | 59.2 6                    | 4703.13            | $(29/2^{-})$         | (M1(+E2))                          | -0.01 6      | 0.20 10      | B(M1)(W.u.)=0.041 5; $B(E2)!=0.03 + 38 - 3$                                                             |
|               |                      |                              |                           |                    |                      |                                    |              |              | Other IV: 86 4 at 65° in $({}^{36}\text{Ar},3\text{pv})$ : 76 13 in $({}^{40}\text{Ca},3\text{pv})$ .   |
| 5090.56       | $(31/2^+)$           | 340.3 1                      | 10.0 <sup>a</sup> 10      | 4750.22            | $(29/2^+)$           | (M1+E2)                            |              | 0.014 3      |                                                                                                         |
|               | (- / )               | 736.0 1                      | $100^{a} 4$               | 4354.52            | $(29/2^+)$           | (M1(+E2))                          | -0.02 3      |              | B(M1)(W.u.) > 0.034                                                                                     |
|               |                      | 972.0 3                      | 5.5 <sup>a</sup> 10       | 4119.30            | $(27/2^+)$           | [E2]                               |              |              | B(E2)(W.u.) > 0.91                                                                                      |
| 5268.10       | $(33/2^+)$           | 177.6 <i>1</i>               | 73.8 7                    | 5090.56            | $(31/2^+)$           | (M1+E2)                            |              | 0.11 5       | Other IV: 87 4 at 65° in $({}^{36}\text{Ar}, 3\text{pv})$ : 85 11 in $({}^{40}\text{Ca}, 3\text{pv})$ . |
|               | (1)                  | 913.6 <i>1</i>               | 100.0 11                  | 4354.52            | $(29/2^+)$           | E2                                 |              |              | $B(E2)(W.u.)=3.14\ 21$                                                                                  |
| 5382.90       | $(31/2^+)$           | 1028.4 2                     | 100                       | 4354.52            | $(29/2^+)$           | (M1(+E2))                          |              |              |                                                                                                         |
| 5567.13       | $(33/2^{-})$         | 489.2 1                      | 100 <sup><i>a</i></sup> 4 | 5077.93            | $(31/2^{-})$         | (M1(+E2))                          | -0.02 6      |              | B(M1)(W.u.)>0.26                                                                                        |
|               |                      | 864.0 <i>3</i>               | 3.2 <sup>a</sup> 11       | 4703.13            | $(29/2^{-})$         | [E2]                               |              |              | B(E2)(W.u.)>2.1                                                                                         |
| 5776.12       | $(33/2^+)$           | 393.1 2                      | 80 <b>a</b> 20            | 5382.90            | $(31/2^+)$           |                                    |              |              |                                                                                                         |
|               |                      | 685.9 2                      | 100 <b>a</b> 20           | 5090.56            | $(31/2^+)$           | (M1(+E2))                          |              |              |                                                                                                         |
| 5933.67       | $(35/2^+)$           | 157.6 <i>1</i>               | 2.9 <sup>a</sup> 6        | 5776.12            | $(33/2^+)$           |                                    |              |              |                                                                                                         |
|               |                      | 665.5 <i>1</i>               | 100 <sup><i>a</i></sup> 4 | 5268.10            | $(33/2^+)$           | (M1(+E2))                          | -0.01 6      |              | B(M1)(W.u.)=0.15 + 7 - 11                                                                               |
| 6158.73       | $(35/2^{-})$         | 591.6 <i>1</i>               | 84.8 10                   | 5567.13            | $(33/2^{-})$         | (M1(+E2))                          | -0.01 6      |              | B(M1)(W.u.)=0.033 5                                                                                     |
|               |                      | 1080.8 <i>1</i>              | 100.0 14                  | 5077.93            | $(31/2^{-})$         | E2                                 |              |              | B(E2)(W.u.)=5.8 9                                                                                       |
| 6192.16       | $(33/2^+)$           | 257.8 <i>3</i>               | $20^{a}$ 7                | 5933.67            | $(35/2^+)$           |                                    |              |              |                                                                                                         |
|               |                      | 809.3 1                      | 93 <b>a</b> 7             | 5382.90            | $(31/2^+)$           | (M1(+E2))                          |              |              |                                                                                                         |
|               |                      | 924.2 <i>1</i>               | $100^{a}$ 10              | 5268.10            | $(33/2^+)$           | (M1(+E2))                          |              |              |                                                                                                         |
|               |                      | 1101.1 2                     | 57 <sup>a</sup> 13        | 5090.56            | $(31/2^+)$           |                                    |              |              |                                                                                                         |
|               |                      | 1441.6 4                     | 43 <sup><i>a</i></sup> 7  | 4750.22            | $(29/2^+)$           |                                    |              |              |                                                                                                         |
|               |                      | 1837.4 <i>3</i>              | 93 <sup>4</sup> 10        | 4354.52            | $(29/2^+)$           | (E2)                               | <b>-</b>     |              |                                                                                                         |
| 6452.35       | $(37/2^+)$           | 518.7 1                      | 100                       | 5933.67            | $(35/2^+)$           | (M1(+E2))                          | 0.00 7       |              | B(M1)(W.u.)=0.20 15                                                                                     |
| 6615.81       | (37/2)               | 457.17                       | 100" 3                    | 6158.73            | (35/2)               | (M1+E2)                            | -0.08 4      |              | B(M1)(W.u.)=0.26 5; $B(E2)(W.u.)=9$ 9                                                                   |
| ((00.0        |                      | 1048./ 3                     | 5.04 12                   | 5567.13            | (33/2)               |                                    |              |              |                                                                                                         |
| 6690.8        | $(25/2^{+})$         | 1613.0 8                     | 100                       | 5077.93            | (31/2)               | $(\mathbf{M}_{1}(\mathbf{T}_{2}))$ |              |              |                                                                                                         |
| 6843.07       | $(35/2^{+})$         | 650.9 <i>I</i>               | 100 0                     | 6192.10<br>5269.10 | $(33/2^{+})$         | (MI(+E2))                          |              |              |                                                                                                         |
| 7202.95       | $(27/2^{+})$         | 13/3.1 0                     | 8 3                       | 5208.10            | $(33/2^{+})$         | $(\mathbf{M}1(+\mathbf{E}2))$      |              |              |                                                                                                         |
| 1292.83       | (37/2)               | 449.8 1                      | $100.0\ 25$               | 6102.16            | (33/2)               | (MII(+E2))                         |              |              |                                                                                                         |
|               |                      | 1250.2.2                     | 30 10                     | 5022.67            | (35/2)               |                                    |              |              | Other I. 91 7 at $65^\circ$ in $(36 \text{ Am} 2m)$                                                     |
| 7505 02       | (20/2-)              | 1339.2 2                     | 47.723                    | 3933.07<br>((15.01 | $(35/2^{-})$         | $(\mathbf{M}_1, \mathbf{E}_2)$     | 0.07.5       |              | Other $1\gamma$ : 81 / at 65° in (3° Ar, sp $\gamma$ ).                                                 |
| /505.03       | (39/2)               | 889.2 1                      | 1004 4                    | 0015.81            | (31/2)               | (M1+E2)                            | -0.07 5      |              | Other Ey: $890.2.2$ from ( $^{16}Ca, 3p\gamma$ ).                                                       |
| 7667 00       | $(27/2^{+})$         | 1345.6 3                     | 1.5 5                     | 6102.16            | (35/2)               |                                    |              |              |                                                                                                         |
| /00/.99       | (37/2)               | 14/3.0 5                     | 100 4<br>67 4             | 5268 10            | (33/2)               |                                    |              |              |                                                                                                         |
| 7716 17       | (41/2-)              | 2399.8 3                     | 074<br>100 <b>4</b> 4     | J208.10            | (33/2)               | $(\mathbf{M}1 + \mathbf{E}2)$      |              | 0.061.25     | O(1) = 0.010 + 2.6  from  (40  Gr - 2  max)                                                             |
| //10.1/       | (41/2)               | 211.1 I<br>1100 4 1          | $100^{-4}$                | 7303.05            | (39 2)               | (M1+E2)                            |              | 0.001 23     | Other Ey: 210.1 2 from ( $(Ca, 5p\gamma)$ ).<br>D(E2)(Wy) = 2.7.10                                      |
|               |                      | 1100.4 1                     | 20.9 21                   | 0013.81            | (37/2)               | EΖ                                 |              |              | D(E2)(w.u.)=5.7.10<br>Other Ly, (82 in (40 Ca a 2mi))                                                   |
| 7002 7        |                      | 1202 2 70                    | 520 26                    | 6600.8             |                      |                                    |              |              | Other ry: $< 0.5 \text{ in } (-(\alpha, \alpha, \beta, \beta, \gamma)).$                                |
| 1992.1        |                      | 1902.2 10                    | $35^{-20}$                | 6150 72            | $(25/2^{-1})$        |                                    |              |              |                                                                                                         |
|               |                      | 1833.94                      | 100 10                    | 0138./3            | (35/2)               |                                    |              |              |                                                                                                         |

From ENSDF

| Adopted Levels, Gammas (continued)                            |                                                                                                                                                                                                       |                                                                                                         |                                                                             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\gamma$ <sup>(91</sup> Tc) (continued)                       |                                                                                                                                                                                                       |                                                                                                         |                                                                             |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |
| E <sub>i</sub> (level)                                        | ${ m J}^{\pi}_i$                                                                                                                                                                                      | ${\rm E_{\gamma}}^{\dagger}$                                                                            | $I_{\gamma}$ ‡                                                              | $\mathrm{E}_{f}$                                             | $\mathrm{J}_f^\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mult. <sup>#</sup>                               | $\delta^{\mathbf{@}}$ | α <sup>e</sup> | Comments                                                                                                                                                                                                          |  |  |  |
| 8141.22                                                       | (39/2+)                                                                                                                                                                                               | 473.2 <i>1</i><br>848.5 2<br>1297.9 <i>3</i><br>1689.0 <i>3</i>                                         | 100 5<br>100 5<br>66 5<br>43 5                                              | 7667.99<br>7292.85<br>6843.07<br>6452.35                     | $(37/2^+) (37/2^+) (35/2^+) (37/2^+) (37/2^+) (35/2^+) (35/2^+) (35/2^+) (35/2^+) (35/2^+) (35/2^+) (37/2^+) (35/2^+) (37/2^+) (35/2^+) (37/2^+) (35/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/2^+) (37/$ | (M1(+E2))<br>(M1(+E2))<br>(E2)<br>(M1(+E2))      |                       |                | Other I $\gamma$ : 85 5 at 65° in ( <sup>36</sup> Ar,3p $\gamma$ ).<br>Other I $\gamma$ : 49 5 at 65° in ( <sup>36</sup> Ar,3p $\gamma$ ).<br>Other I $\gamma$ : 36 5 at 65° in ( <sup>36</sup> Ar,3p $\gamma$ ). |  |  |  |
| 8276.58                                                       | (39/2 <sup>+</sup> )                                                                                                                                                                                  | 2207.7 3<br>983.5 3<br>1824.4 4<br>2343.2 10                                                            | 89 5     100a 10     48a 10     19a 5                                       | 5933.67<br>7292.85<br>6452.35<br>5933.67                     | $(35/2^+)$<br>$(37/2^+)$<br>$(37/2^+)$<br>$(35/2^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (E2)                                             |                       |                | Other $1\gamma$ : // 8 at 65° in ( <sup>50</sup> Ar, $3p\gamma$ ).                                                                                                                                                |  |  |  |
| 8392.3<br>8559.0                                              | (41/2 <sup>+</sup> )                                                                                                                                                                                  | 1939.9 <i>10</i><br>566.3 <i>2</i><br>1943.0 <i>7</i>                                                   | 100     100a 15     20a 5                                                   | 6452.35<br>7992.7<br>6615.81                                 | $(37/2^+)$<br>$(37/2^-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E2                                               |                       |                | B(E2)(W.u.)=2.29 25                                                                                                                                                                                               |  |  |  |
| 8835.89                                                       | (41/2 <sup>+</sup> )                                                                                                                                                                                  | 559.3 <i>1</i><br>694.7 <i>1</i><br>1542.6 <i>5</i><br>2383.6 <i>5</i>                                  | 16.7 7<br>100.0 <i>14</i><br>4.3 7<br>8.0 7                                 | 8276.58<br>8141.22<br>7292.85<br>6452.35                     | $(39/2^+)(39/2^+)(37/2^+)(37/2^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (M1(+E2))<br>(M1(+E2))<br>[E2]<br>Q <sup>b</sup> | -0.01 7               |                | B(M1)(W.u.)= $0.0127 \ 13$<br>B(E2)(W.u.)= $0.022 \ 5$<br>B(E2)(W.u.)= $0.0047 \ 7$<br>Other Iv: 5.4 14 at 65° in ( <sup>36</sup> Ar 3pv)                                                                         |  |  |  |
| 9008.7<br>9299.78                                             | (41/2 <sup>+</sup> )<br>(43/2 <sup>+</sup> )                                                                                                                                                          | 2556.3 <sup>c</sup><br>289.9<br>463.9 <i>I</i><br>1158.5 <i>3</i>                                       | 100<br>10.0 <sup><i>a</i></sup> 5<br>100.0 15<br>4.5 5                      | 6452.35<br>9008.7<br>8835.89<br>8141.22                      | $(37/2^+)$<br>$(41/2^+)$<br>$(41/2^+)$<br>$(39/2^+)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q <sup>b</sup><br>[M1,E2]<br>(M1+E2)<br>[E2]     | +0.08 5               | 0.022 7        | E <sub><math>\gamma</math></sub> : from ( <sup>40</sup> Ca, $\alpha$ 3p $\gamma$ ).<br>B(M1)(W.u.)=0.21 <i>10</i> ; B(E2)(W.u.)=7 +9-7<br>B(E2)(W.u.)=0.49 <i>23</i>                                              |  |  |  |
| 9717.0<br>10166.7<br>10388.0<br>10505.4<br>10843.5<br>12172.5 | (45/2 <sup>-</sup> )<br>(45/2 <sup>+</sup> )<br>(43/2 <sup>-</sup> ,45/2 <sup>-</sup> )<br>(47/2 <sup>+</sup> )<br>(43/2 <sup>-</sup> ,45/2 <sup>-</sup> )<br>(47/2 <sup>-</sup> ,49/2 <sup>-</sup> ) | 2000.8 20<br>1774.4 13<br>2671.8 <sup>c</sup><br>1205.6 1<br>3127.3 <sup>c</sup><br>2455.5 <sup>c</sup> | 100<br>100<br>100<br>100<br>100<br>100                                      | 7716.17<br>8392.3<br>7716.17<br>9299.78<br>7716.17<br>9717.0 | $\begin{array}{c} (41/2^{-}) \\ (41/2^{+}) \\ (41/2^{-}) \\ (43/2^{+}) \\ (41/2^{-}) \\ (45/2^{-}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (E2)<br>E2<br>E2                                 |                       |                | B(E2)(W.u.)=3.01 21<br>B(E2)(W.u.)=5.1 12                                                                                                                                                                         |  |  |  |
| 12225.1<br>1348.4+x<br>2807.9+x                               | J+2<br>I+4                                                                                                                                                                                            | 2058.4 <i>17</i><br>1348.4 <sup><i>d</i></sup> <i>3</i><br>1459 51 <sup><i>d</i></sup> <i>4</i>         | 100<br>$0.25^{d} 3$<br>$0.99^{d} 5$                                         | 10166.7<br>x<br>1348 4+x                                     | $(45/2^+)$<br>J $\approx$ (51/2)<br>I+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |
| 4377.7+x                                                      | J+6                                                                                                                                                                                                   | 1569.75 <sup>d</sup> 17                                                                                 | $1.00^{d} 5$                                                                | 2807.9+x                                                     | J+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |
| 7852.3+x<br>9756.2+x                                          | J+8<br>J+10<br>J+12                                                                                                                                                                                   | $1081.97^{d}$ 13<br>$1792.63^{d}$ 13<br>$1903.79^{d}$ 16                                                | $1.03^{d} 5$<br>$0.93^{d} 5$<br>$1.00^{d} 5$                                | 4377.7+x<br>6059.7+x<br>7852.3+x                             | J+6<br>J+8<br>J+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |
| 11771.0+x<br>13890.3+x                                        | J+14<br>J+16                                                                                                                                                                                          | $2014.84^{d} 17$ $2119.26^{d} 17$ $2224.14^{d} 2$                                                       | $0.95^{d} 5$<br>$0.89^{d} 5$                                                | 9756.2+x<br>11771.0+x                                        | J+12<br>J+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |
| 16114.4+x<br>18440.4+x<br>20861.9+x                           | J+18<br>J+20<br>J+22                                                                                                                                                                                  | $\begin{array}{c} 2224.1^{a} \ 3\\ 2325.9^{d} \ 3\\ 2421.5^{d} \ 3\end{array}$                          | $\begin{array}{c} 0.61^{d} \ 4 \\ 0.37^{d} \ 3 \\ 0.21^{d} \ 3 \end{array}$ | 13890.3+x<br>16114.4+x<br>18440.4+x                          | J+16<br>J+18<br>J+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                       |                |                                                                                                                                                                                                                   |  |  |  |

7

 $^{91}_{43}{
m Tc}_{48}$ -7

### $\gamma(^{91}\text{Tc})$ (continued)

- <sup>†</sup> From 1994Ru01 in  ${}^{58}$ Ni( ${}^{36}$ Ar,3p $\gamma$ ), except as noted.
- <sup>‡</sup> From 1993Ar01 in (<sup>40</sup>Ca, $\alpha$ 3p $\gamma$ ), except as noted.
- <sup>#</sup> Definite E2 assignments are made for transitions assigned as stretched Q (based on DCO ratios in  $({}^{36}\text{Ar}, 3p\gamma)$ ) which cannot be M2 based on RUL; note, however, that DCO ratios cannot differentiate between Q ( $\Delta J=2$ ) and D ( $\Delta J=0$ ) transitions. Other assignments are based on measured DCO ratios combined with  $\Delta \pi$  deduced from level scheme in  $({}^{36}\text{Ar}, 3p\gamma)$ , unless noted to the contrary.
- <sup>@</sup> From DCO ratios in  $({}^{36}Ar, 3p\gamma)$  (from 1994Ru01).
- $^{\&}$  From  $^{91}\mathrm{Ru}\ \varepsilon$  decay.
- <sup>*a*</sup> From 1994Ru01 in (<sup>36</sup>Ar,3p $\gamma$ ). I $\gamma$  is photon branching at 65°.
- <sup>*b*</sup> D+Q from DCO ratio in ( ${}^{40}Ca, \alpha 3p\gamma$ ); not E1+M2 from RUL.
- <sup>c</sup> From (<sup>40</sup>Ca, $\alpha$ 3p $\gamma$ ). E $\gamma$  lies outside the  $\gamma$ -energy range of the (<sup>36</sup>Ar,3p $\gamma$ ) study in 1994Ru01.
- <sup>d</sup> SD band transition from 2003La24, relative intensity within the band from 2000Id01 In ( $^{40}Ca, \alpha 3p\gamma$ ).
- <sup>*e*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

### Level Scheme

Intensities: Relative photon branching from each level



<sup>91</sup><sub>43</sub>Tc<sub>48</sub>

### Level Scheme (continued)

Intensities: Relative photon branching from each level



 $^{91}_{43}{
m Tc}_{48}$ 

### Level Scheme (continued)

Intensities: Relative photon branching from each level



 $^{91}_{43}{
m Tc}_{48}$ 

## Level Scheme (continued)

# Intensities: Relative photon branching from each level



12

**Adopted Levels, Gammas** 



(5/2<sup>-</sup>) 884.90

<sup>91</sup><sub>43</sub>Tc<sub>48</sub>



<sup>91</sup><sub>43</sub>Tc<sub>48</sub>



<sup>91</sup><sub>43</sub>Tc<sub>48</sub>