91 Rb β^- decay 1976Gl02,1997Gr09

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013					

Parent: ⁹¹Rb: E=0.0; $J^{\pi}=3/2^{(-)}$; $T_{1/2}=58.2$ s 3; $Q(\beta^{-})=5907$ 9; $\%\beta^{-}$ decay=100.0

Others: 1970Ma53, 1973Cl02, 1974Ac01, 1978Wo15, 1979Bo26, 1980De02, 1983Ia02, 1992Pr03, 1996Gr20, 2006HaZZ, 2011Ta26 (TAGS spectrum; No details given).

1997Gr09: total absorption γ spectrometer (TAGS) (NaI(Tl) well detector with Si electron detector in well) operated in singles or in $4\pi\gamma$ - β coin mode, summed-E γ resolution \approx 5%; deduced β feeding to (g.s. + 94 level) (from $4\pi\gamma$ - β coin data), β feeding to excited states (from summed-E γ spectrum); see also 1996Gr20.

1976Gl02: on-line separation of fission products. Ge(Li) detectors, FWHM=2.5 keV at 1332 keV. Ge(Li) low-energy photon spectrometer, FWHM=0.5 keV at 122 keV. Measured Eγ, Iγ, γγ, γ(t).

The decay scheme is that of 1976Gl02 with the omission of a 5289 level deexcited by 3224.4 γ and 3346.2 γ . TAGS data indicate that the intensities of the latter gammas are far too great for those placements to be correct. Note that the latter data also indicate $\approx 10.8\% \beta$ - feeding to as yet unknown levels (primarily in the energy ranges of 2.9-4.1 MeV and 4.6-5.5 MeV); since the total unplaced I γ is $\approx 2.6\%$, this suggests that some of the gammas in the adopted scheme are incorrectly placed.

⁹¹Sr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	5/2+	9.65 [‡] h 6	
93.628 4	$(3/2)^+$	89.4 [#] ns 16	
439.159 19	(+)		
1042.034 25	(+)		
1230.84 5	(*)		
1367.76 7			Additional information 1.
1482.12 10			
1917 09 12			
1942.91 8	$(1/2^+, 3/2, 5/2)$		
2064.66 6	$1/2^{(+)}, 3/2, 5/2$		
2159.08 22			
2236.95 12			
≈2350 [@]			
2657.89 6	$1/2^{(-)}$ to $5/2^{(-)}$		
≈2900 [@]			
≈3000 [@]			
≈3100 [@]			
≈3200 [@]			
≈3300 [@]			
3364.68 11	1/2,3/2,5/2		
3395.5? 4	$(1/2^+, 3/2, 5/2)$		
≈3400 [@]			
3446.58 18	$1/2^{(+)}, 3/2, 5/2$		
≈3550 [@]	(1.12+ 2.12 5.12)		
3643.81? 21	$(1/2^+, 3/2, 5/2)$		
3693.23 12	$1/2^{(+)}$ to $5/2^{(+)}$		
3730.80 14	$1/2^{(1)}, 5/2, 5/2$		
~3800@	1/2,3/2,3/2		
~3831.08? 14	(1/2, 3/2, 5/2)		
3839.4? 3	$(1/2^+, 3/2, 5/2)$		
≈3900 [@]			

1976Gl02,1997Gr09 (continued)

			⁹¹ Sr Le	vels (continued)
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]
3938.42? 20	$(1/2^+, 3/2, 5/2)$	4253.8? 3	(1/2+,3/2,5/2)	≈4800 [@]
≈4000 [@]		4265.50 16	$3/2^{(-)}, 5/2^{(-)}$	≈4900 [@]
4043.33 16	$3/2^{(-)}, 5/2^{(-)}$	4327.73 19	$1/2^{(-)}$ to $5/2^{(-)}$	≈5000 [@]
4078.30 10	$3/2^{(-)}, 5/2^{(-)}$	4358.37 16	$(3/2^{-}, 5/2^{-})$	≈5100 [@]
≈4100 [@]		4391.0? 4	$(1/2^+, 3/2, 5/2)$	≈5200 [@]
4157.55 19	$3/2^{(-)}, 5/2^{(-)}$	4453.0? <i>3</i>	$(1/2^+, 3/2, 5/2)$	≈5300 [@]
4189.39 16	$3/2^{(-)}, 5/2^{(-)}$	≈4600 [@]		≈5400 [@]
4240.1? 4	(1/2,3/2,5/2)	≈4700 [@]		≈5500 [@]
4249.1? <i>3</i>	$(1/2^+, 3/2, 5/2)$	4793.1 <i>3</i>	$(3/2^{-}, 5/2^{-})$	

⁹¹**Rb** β^- decay

[†] From least-squares fit to $E\gamma$, omitting the 1024 γ and including tentatively-placed gammas only when there is no definitely-placed γ deexciting the same level.

[‡] From Adopted Levels.

[#] Weighted average of 94 ns 5 (1993Wo07), 87.5 ns 30 (1976Gl02), 88 ns 3 (1970Ma07), 91 ns 3 (1970Ma53). Other $T_{1/2}$: 90 ns 10 (1974Ac01).

^(a) Not a discrete level. E is the centroid of an energy bin of typically \approx 100 keV width which encompasses a level or levels fed in β^- decay with the summed I β indicated under " β - radiations"; from total absorption γ spectroscopy (1997Gr09). Neither specific level energies nor deexcitation γ energies are known at present. Not included in Adopted Levels.

β^{-} radiations

 β^{-} decay strength function measured by 1975A111. Average E β : 1560 *30* (1990Ru05), 1360 *70* (1982A101).

E(decay)†	E(level)	Iβ ^{−‡&}	Log ft	Comments
(407 9)	≈5500	0.010 [#]		Additional information 2.
(507 9)	≈5400	0.014 [#]		Additional information 3.
(607 9)	≈5300	0.024 [#]		Additional information 4.
(707 9)	≈5200	0.029 [#]		Additional information 5.
(807 9)	≈5100	0.048 [#]		Additional information 6.
(907 9)	≈5000	0.067 [#]		Additional information 7.
(1007 9)	≈4900	0.096 [#]		Additional information 8.
(1107 9)	≈4800	0.114 [#]		Additional information 9.
(1114 9)	4793.1	0.20 4	5.88 9	av $E\beta = 403.9 \ 39$
				$l\beta^{-}$: 0.22 from TAGS data.
(1207 9)	≈4700	0.24 [#]		Additional information 10.
(1307 9)	≈4600	0.43 [#]		Additional information 11.
(1454 ^{<i>a</i>} 9)	4453.0?	0.35 7	6.08 9	av E β =552.4 40
				$I\beta^-$: 0.31 from TAGS data.
(1516 ^{<i>a</i>} 9)	4391.0?	0.32 6	6.19 9	av E β =580.0 41
				$I\beta^-$: 0.28 from TAGS data.
(1549 9)	4358.37	0.63 8	5.93 6	av E β =594.6 41
(1570.0)	4227 72	0.02.0	E 0 E E	$1\beta^{-1}: 0.57$ from TAGS data.
(15/9 9)	4327.73	0.82 9	5.85 5	av $E\beta = 008.5$ 41 $I\beta^{-1}$, 0.70 from TACS data
(1642, 9)	4265 50	2.26.17	5 48 <i>4</i>	$\mu = 0.79$ from FAOS data. av $F\beta = 636.4.41$
(1012))	1205.50	2.20 17	5.10 1	

Continued on next page (footnotes at end of table)

⁹¹**Rb** β^- decay **1976Gl02,1997Gr09** (continued)

β^- radiations (continued)

E(decay)†	E(level)	Iβ ^{−‡&}	Log ft	Comments
0				$I\beta^-$: 2.14 from TAGS data.
(1653 ^{<i>u</i>} 9)	4253.8?	0.38 5	6.27 6	av $E\beta = 641.6 \ 41$ $B^{-1} = 0.36 \ \text{from TAGS}$ data
(1658 ^{<i>a</i>} 9)	4249.1?	0.34 4	6.32 6	av E β =643.8 41
				$I\beta^-$: 0.33 from TAGS data.
(1667 ^{<i>u</i>} 9)	4240.1?	0.34 7	6.33 9	av $E\beta = 647.8 \ 41$
(1718 9)	4189.39	1.26 11	5.81 4	av E β =670.8 41
				$I\beta^-$: 1.23 from TAGS data.
(1749-9)	4157.55	1.24 11	5.85 4	av $E\beta$ =685.2 41 I β^{-1} : 1.36 from TAGS data
(1807-9)	≈4100	0.50 [#]		Additional information 12.
(1829 9)	4078.30	6.8 5	5.19 4	av E β =721.3 42
(10(10))	1012 22	1 (5.21	5946	$I\beta^-$: 7.48 from TAGS data.
(1804 9)	4045.55	1.03 21	5.84 0	$I\beta^{-1}$: 1.80 from TAGS data.
(1907 9)	≈4000	1.37 [#]		Additional information 13.
(1969 ^{<i>a</i>} 9)	3938.42?	1.31 13	6.04 5	av Eβ=785.5 42
		#		$I\beta^-$: 1.44 from TAGS data.
(2007 9)	≈3900 3830 42	1.32"	6335	Additional information 14. $P_{\text{eq}} = 831.1.42$
(2008 9)	5059.41	0.82 9	0.55 5	$I\beta^-$: 0.91 from TAGS data.
(2076 ^{<i>a</i>} 9)	3831.08?	0.68 8	6.42 6	av E β =835.0 42
		#		$I\beta^-$: 0.74 from TAGS data.
(2107 9)	≈3800 3776.62	0.30"	6 78 6	Additional information 15. R = 260.2 - 42
(2150 9)	5770.02	1.05 12	0.28 0	$I\beta^{-1}$: 1.12 from TAGS data.
(2170 9)	3736.80	2.13 20	6.00 5	av E β =878.6 42
(2214, 0)	2602 22	1160	5 20 4	$I\beta^-: 2.31$ from TAGS data.
(2214 9)	5095.25	11.0 9	5.50 4	$I\beta^{-1}$: 12.50 from TAGS data.
(2263 ^{<i>a</i>} 9)	3643.81?	0.84 10	6.48 6	av E β =921.8 42
		#		$I\beta^-$: 0.92 from TAGS data.
(2357 9)	≈3550 3446.58	0.96"	6 26 5	Additional information 16. $P_{\text{eq}} = 1014 \text{ 0 } 43$
(2400 9)	5440.56	1.90 19	0.20 5	$I\beta^-$: 2.12 from TAGS data.
(2507 9)	≈3400	1.33 [#]		Additional information 17.
(2512 ^{<i>a</i>} 9)	3395.5?	0.46 9	6.93 9	av $E\beta = 1037.9 \ 43$
(2542, 9)	3364 68	2 89 21	6 15 4	$I\beta$: 0.51 from TAGS data. av $F\beta = 1052.4.43$
(2312))	5501.00	2.07 21	0.15 7	$I\beta^{-1}$: 3.17 from TAGS data.
(2607 9)	≈3300	0.76 [#]		Additional information 18.
(2707 9)	≈3200	0.57 <mark>#</mark>		Additional information 19.
(2807 9)	≈3100	0.57 [#]		Additional information 20.
(2907 9)	≈3000	0.67 [#]		Additional information 21.
(3007 9)	≈2900 2657.80	0.67	5062	Additional information 22. $r_{1} = r_{2} = r_{1} = r_{2}$
(3249 9)	2037.89	10.4 11	5.00 5	I_{B}^{-1} : 16.46 from TAGS data.
(3557 9)	≈2350	0.67 [#]		Additional information 23.
(3670 9)	2236.95	0.36 9	7.74 11	av E β =1587.7 43
(3748 0)	2150 08	0 10 6	8 06 14	$I\beta^-: 0.34$ from TAGS data.
(37707)	2137.00	0.17 0	0.00 14	$I\beta^-: 0.18$ from TAGS data.

Continued on next page (footnotes at end of table)

⁹¹**Rb** $β^-$ decay 1976Gl02,1997Gr09 (continued)

β^{-} radiations (continued)

E(decay)†	E(level)	Ιβ ^{-‡&}	Log ft	Comments
(3842 9)	2064.66	5.4 5	6.65 4	av Eβ=1670.2 44
(20(4,0))	10.40.01	25.2	6.00.4	$I\beta^-$: inconsistent with % $I\beta$ =4.32 from TAGS data.
(3964-9)	1942.91	3.5 3	6.90 4	av $\mathbb{E}\beta = 1/28.5$ 44 $\mathbb{E}\beta^{-1} = 2.80$ from TACS data
(3000, 0)	1017.00	1 08 11	7 13 5	$E_{P} = 1740.0 \ A_{A}$
(3990 9)	1917.09	1.00 11	7.455	$I\beta^{-1}$ 0.92 from TAGS data
(4167 9)	1740.27	0.73 14	7.68 9	ay $E\beta = 1825.8 44$
($I\beta^{-}$: 0.70 from TAGS data.
(4425 9)	1482.12	1.10 14	7.62 6	av E β =1949.8 44
				I β^- : inconsistent with %I β =0.15 from TAGS data.
(4676 9)	1230.84	1.7 3	7.53 8	av E β =2070.7 44
(10(5.0)	10.10.00.1	10.2	7 50 0	$I\beta^-$: high cf. $\% I\beta$ =1.14 from TAGS data.
(4865 9)	1042.034	1.8 3	7.59 8	av $E\beta = 2161.6.44$
(5468 0)	430 150	236	7 71 12	$B : nign ci. \% \beta = 1.55$ from TAGS data.
(3408 9)	459.159	2.5 0	1.11 12	$I\beta^{-2+32.1}$ 44 $I\beta^{-1}$ inconsistent with $\%I\beta=0.60$ from TAGS data
(5813-9)	93.628	24.5	6.81.9	av E β =2618.8 44
()				$I\beta^{-1}$: $\% I\beta$ (g.s.+94 level)=17.4 39 (from $4\pi\gamma$ - β coin data, 1996Gr20 and 1997Gr09); if $I\beta$ (g.s.)=2 5, this leaves $\% I\beta$ (94)=15 +2-6. This is significantly lower than, but not inconsistent with the intensity balance at the 94 level deduced from the decay scheme
(5907-9)	0	2 [@] 5	7.9 11	av $E\beta = 2664.0 \ 44$
(~			

[†] Based on Q(β^-)=5907 9 (2012Wa38). Q(β^-) values deduced from measured β^- endpoint energies are as follows: 5860 10 (1992Pr03), 5850 20 (1983Ia02), 5857 8 (1980De02), 5760 40 (1978Wo15; revision of 5680 40 from $\beta\gamma$ coin (6 gates) in 1973Cl02). Other Q(β^-): 5880 50 (2001Ko07); 2006HaZZ (value unstated).

[‡] From intensity balance at each level, except as noted; for uncertainly placed lines, the full measured I γ is assumed. %I β values deduced from TAGS data are given in comments for comparison; for most established levels these β feedings agree well, the notable exceptions being for the 439 and 1482 levels, and probably the 93 level. Note that TAGS data also indicate a total %I β =10.8 to currently unknown levels.

[#] From TAGS (1997Gr09); may represent feeding to one level or to several levels of undetermined energy, lying within a typically≈100 keV wide energy bin centered on the level energy indicated.

^(a) 1976Gl02 deduce I β =5 5 based on relative I γ for ⁹¹Kr and ⁹¹Rb decay chain activities in decay equilibrium with ⁹¹Sr growing in, assuming %I β (⁹¹Y g.s.)=30.8; the evaluator revises this to I β =2 5 based on adopted %I β (⁹¹Y g.s.)=28.6. Other %I β (g.s.): <6 from direct measurement (dependent on assumed β counter threshold energy) (1976Wo05); 1997Gr09 estimate that, of their measured I β (g.s.+94)=17.4 39, I β ≈6.2 feeds the g.s. I β (g.s.)=60 10 (1974Ac01) appears to be erroneous.

[&] Absolute intensity per 100 decays.

^{*a*} Existence of this branch is questionable.

⁹¹**Rb** $β^-$ decay **1976Gl02,1997Gr09** (continued)

 $\gamma(^{91}\mathrm{Sr})$

Iγ normalization: From Σ (I(γ+ce) to g.s.)=98 5, which assumes that %Iβ(⁹¹Sr g.s.)=2 5 (see comment on Iβ to g.s.). Some of the additional levels implied by TAGS data might also have g.s. γ's, but those γ's are probably too weak to greatly affect the adopted normalization; all but 2.6% of total Iγ is placed, and the strongest unplaced γ has Iγ=0.33%.

Average Εγ: 2335 33 (1990Ru05).

 $\boldsymbol{\nabla}$

 α (K)exp data are from 1974Ac01, if not stated otherwise. Ice spectrum lines are normalized to well-known K conversion lines (556 γ (⁹¹Y), 304 γ (⁸⁵Kr), and 151 γ (⁸⁵Rb)).

E_{γ}^{\ddagger}	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ [#]	α^{\dagger}	Comments
93.628 [@] 4	1000 51	93.628	(3/2)+	0	5/2+	E2(+M1)	>3.3	1.25 5	α(K)exp=1.08 7; α(K)exp/α(L)exp=5.95 24 (1975Wo05) α(K)=1.04 4; α(L)=0.175 8; α(M)=0.0294 13; α(N+)=0.00351 15 α(N)=0.00338 14; α(O)=0.000132 5 α(K)exp: weighted average of 1.10 9 (1975Wo05) and 1.05 10 (1974Ac01). The datum from 1975Wo05 is the unweighted average of 1.19 6 from I(ce(K))/Iγ and 1.01 7 from I(K x ray)/Iγ. K/(L+M+)=5.38 21 (1970Ma07). δ: from α(K)exp; δ>1.1 from K/L. δ=0.8 +5-2 from K/(L+M+) is inconsistent with α(K)exp.
345.52 [@] 3	246 12	439.159	(*)	93.628	(3/2)+	(M1,E2)		0.009 3	α (K)exp=0.009 4 (1974Ac01) α (K)=0.0080 25; α (L)=0.0009 3; α (M)=0.00016 6; α (N+)=2.0×10 ⁻⁵ 7 α (N)=1.9×10 ⁻⁵ 7; α (O)=1.2×10 ⁻⁶ 4 Other E γ : 345.43 3 (1976Gl02).
439.15 3	62 <i>3</i>	439.159	(*)	0	5/2+				,
509.6 ^{&} 5	5.1 8	1740.27		1230.84	(*)				
593.23 <i>3</i> 602.85 <i>3</i>	38.2 20 84 4	2657.89 1042.034	1/2 ⁽⁻⁾ to 5/2 ⁽⁻⁾ (⁺)	2064.66 439.159	1/2 ⁽⁺⁾ ,3/2,5/2 (⁺)	(M1,E2)		0.00191 22	α (K)exp=0.0018 <i>11</i> (1974Ac01) α =0.00191 22; α (K)=0.00169 <i>19</i> ; α (L)=0.000187 24; α (M)=3.1×10 ⁻⁵ 4; α (N+)=4.2×10 ⁻⁶ 5 α (N)=3.9×10 ⁻⁶ 5; α (O)=2.51×10 ⁻⁷ 24
^x 702.66 25	3.1 5								
749.73 ^e 25 ^x 816.5 5	3.3 6 3.0 7	4793.1	(3/2 ⁻ ,5/2 ⁻)	4043.33	$3/2^{(-)}, 5/2^{(-)}$				
875.0 <i>3</i> 912.8 ^{ae} 4 917.59 22	3.2 5 2.1 7 5.5 9	1917.09 4358.37 2657.89	$(3/2^{-}, 5/2^{-})$ $1/2^{(-)}$ to $5/2^{(-)}$	1042.034 3446.58 1740.27	$(^+)$ $1/2^{(+)}, 3/2, 5/2$				

From ENSDF

⁹¹ Rb β ⁻ decay 1976Gl02,1997Gr09 (continu						9 (continued)						
	γ ⁽⁹¹ Sr) (continued)											
E_{γ}^{\ddagger}	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$lpha^\dagger$	Comments				
948.49 5	34.7 19	1042.034	(*)	93.628	(3/2)+	(M1,E2)	0.000641 17	$\alpha(K)\exp=0.0006 \ 3 \ (1974Ac01)$ $\alpha=0.000641 \ 17; \ \alpha(K)=0.000568 \ 15;$ $\alpha(L)=6.16\times10^{-5} \ 20; \ \alpha(M)=1.03\times10^{-5} \ 4;$ $\alpha(N+)=1.38\times10^{-6} \ 4$ $\alpha(N)=1 \ 30\times10^{-6} \ 4; \ \alpha(O)=8 \ 46\times10^{-8} \ 18$				
993.69 <i>13</i>	8.9 8	4358.37	(3/2 ⁻ ,5/2 ⁻)	3364.68	1/2,3/2,5/2							
1006.3 4	2.8 7	2236.95		1230.84	(+)							
1023.20 12	13.1 11	2064.66	$1/2^{(+)}, 3/2, 5/2$	1042.034	$\binom{+}{2}$							
1034.9 0	3.9 10	3693.23	$1/2^{(+)}$ to $5/2^{(+)}$	2657.89	$1/2^{\circ}$ to $5/2^{\circ}$	(M1 E2)	0.000520.10	$\alpha(K) = 0.00052.22.(1074 \Lambda_{2}01)$				
1041.99 5	05 5	1042.034		0	5/2	(IM1,E2)	0.000320 10	$\alpha(\mathbf{K})\exp=0.00052\ 22\ (19)4\mathbf{A}(\mathbf{C}(\mathbf{I}))$ $\alpha=0.000520\ 10;\ \alpha(\mathbf{K})=0.000461\ 9;$ $\alpha(\mathbf{L})=4.98\times10^{-5}\ 12;\ \alpha(\mathbf{M})=8.36\times10^{-6}\ 19;$ $\alpha(\mathbf{N}+)=1.120\times10^{-6}\ 2$ $\alpha(\mathbf{N})=1.051\times10^{-6}\ 22;\ \alpha(\mathbf{Q})=6.87\times10^{-8}\ 11$				
1137.24 5	115 6	1230.84	(*)	93.628	(3/2)+	(M1,E2)	0.000432 7	$\alpha(K) \exp=0.00036 \ I5 \ (1974Ac01) \\ \alpha=0.000432 \ 7; \ \alpha(K)=0.000381 \ 6; \\ \alpha(L)=4.11\times10^{-5} \ 7; \ \alpha(M)=6.90\times10^{-6} \ I2; \\ \alpha(N+)=2.7\times10^{-6} \ 3 \\ \alpha(N)=8.68\times10^{-7} \ I4; \ \alpha(O)=5.68\times10^{-8} \ 8; \\ \alpha(IPF)=1.8\times10^{-6} \ 3 $				
1149.7 <mark>°</mark> 7	2.0 8	4793.1	$(3/2^{-}, 5/2^{-})$	3643.81?	$(1/2^+, 3/2, 5/2)$							
1174.1 ^e 5	2.9 8	3831.08?	(1/2,3/2,5/2)	2657.89	$1/2^{(-)}$ to $5/2^{(-)}$							
1205.6 3	3.4 7	3364.68	1/2,3/2,5/2	2159.08								
1230.64 <i>15</i>	8.7 8	1230.84	(*)	0	5/2+							
~1238.7 0 ×1250 7 8	2.0 0											
1274.05 18	7.4.9	1367.76		93.628	$(3/2)^+$							
1299.9 3	4.8 7	3364.68	1/2.3/2.5/2	2064.66	$1/2^{(+)}, 3/2, 5/2$							
1367.76 8	22.5 15	1367.76	, , , , ,	0	5/2+							
1388.13 24	6.5 9	1482.12		93.628	$(3/2)^+$							
1482.17 11	43 3	1482.12	1/2(+) 2/2 5/2	0	5/2+							
1503.0 /	2.7 10	3446.58	$1/2^{(+)}, 3/2, 5/2$	1942.91	$(1/2^+, 3/2, 5/2)$							
1594.15 17	12.2 11	2657.80	(1/2, 3/2, 3/2) $1/2^{(-)}$ to $5/2^{(-)}$	2230.93	(+)							
1624.8.5	147b 10	2057.09	1/2 2/2 5/2	1740.27	()							
1625.4.3	21.2^{b} 14	2064.66	1/2, 5/2, 5/2 1/2(+) 3/2 5/2	1740.27	(+)							
1628 49 14	21.2 14	3693.23	$1/2^{(-)}$ to $5/2^{(-)}$	2064 66	$1/2^{(+)} 3/2 5/2$							
1646.51 23	7.7 10	1740.27	1/2 00 5/2	93.628	$(3/2)^+$							
1712.0 4	6.1 12	3776.62	1/2,3/2,5/2	2064.66	1/2 ⁽⁺⁾ ,3/2,5/2							
1719.9 <i>3</i>	9.1 14	2159.08		439.159	(*)							
1740.25 10	42 3	1740.27		0	5/2+							

6

L

$\gamma(^{91}\text{Sr})$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{d}	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$
1766.17 ^e 18	4.9 12	3831.08?	(1/2, 3/2, 5/2)	2064.66	1/2 ⁽⁺⁾ ,3/2,5/2
1794.5 <mark>°</mark> 6	3.7 11	4453.0?	$(1/2^+, 3/2, 5/2)$	2657.89	$1/2^{(-)}$ to $5/2^{(-)}$
1823.3 4	10.6 18	1917.09		93.628	$(3/2)^+$
1841.1 <i>3</i>	3.8 13	4078.30	$3/2^{(-)}, 5/2^{(-)}$	2236.95	
1849.27 9	98 <i>5</i>	1942.91	$(1/2^+, 3/2, 5/2)$	93.628	$(3/2)^+$
1859.56 25	4.5 9	3776.62	1/2,3/2,5/2	1917.09	
1874.4 ^e 4	3.3 16	3938.42?	$(1/2^+, 3/2, 5/2)$	2064.66	1/2 ⁽⁺⁾ ,3/2,5/2
1917.11 <i>15</i>	22.6 17	1917.09		0	5/2+
1942.81 17	11.8 12	1942.91	$(1/2^+, 3/2, 5/2)$	0	5/2+
1953.0 5	2.1 9	3693.23	$1/2^{(-)}$ to $5/2^{(-)}$	1740.27	
1970.99 <i>10</i>	199 <i>10</i>	2064.66	$1/2^{(+)}, 3/2, 5/2$	93.628	$(3/2)^+$
2013.5 3	7.9 12	4078.30	$3/2^{(-)}, 5/2^{(-)}$	2064.66	1/2 ⁽⁺⁾ ,3/2,5/2
2036.1 <i>3</i>	10.9 15	3776.62	1/2,3/2,5/2	1740.27	
2064.69 14	23.3 18	2064.66	$1/2^{(+)}, 3/2, 5/2$	0	5/2+
2143.22 14	19.8 <i>15</i>	2236.95		93.628	$(3/2)^+$
2161.8 ^e 6	3.5 11	3643.81?	$(1/2^+, 3/2, 5/2)$	1482.12	
^x 2196.0 4	5.5 12				
^x 2208.5 7	3.1 11				
2218.2 <i>3</i>	8.3 13	2657.89	$1/2^{(-)}$ to $5/2^{(-)}$	439.159	(*)
2236.9 5	4.1 10	2236.95		0	5/2+
2254.6 4	3.7 9	3736.80	1/2 ⁽⁺⁾ ,3/2,5/2	1482.12	
2263.1 <i>3</i>	4.5 9	4327.73	$1/2^{(-)}$ to $5/2^{(-)}$	2064.66	1/2 ⁽⁺⁾ ,3/2,5/2
2322.34 21	13.3 15	3364.68	1/2,3/2,5/2	1042.034	(*)
2448.5 ^e 7	4.4 14	4391.0?	$(1/2^+, 3/2, 5/2)$	1942.91	$(1/2^+, 3/2, 5/2)$
2505.95 14	42.2 25	3736.80	$1/2^{(+)}, 3/2, 5/2$	1230.84	(+)
2564.19 14	372 19	2657.89	$1/2^{(-)}$ to $5/2^{(-)}$	93.628	$(3/2)^+$
^x 2606.7 5	4.1 11				
^x 2724.2 7	5.1 15				
2783.3 4	9.9 15	4265.50	$3/2^{(-)}, 5/2^{(-)}$	1482.12	
2789.6 4	14.6 15	4157.55	$3/2^{(-)}, 5/2^{(-)}$	1367.76	
2847.39 22	19.3 20	4078.30	$3/2^{(-)}, 5/2^{(-)}$	1230.84	(*)
2872.5 ^e 6	5.6 17	4240.1?	(1/2,3/2,5/2)	1367.76	
2897.6 5	6.1 12	4265.50	$3/2^{(-)}, 5/2^{(-)}$	1367.76	
^x 2912.0 4	9.8 7				
2925.72 18	45 <i>3</i>	3364.68	1/2,3/2,5/2	439.159	(*)
2958.6 6	3.8 11	4189.39	$3/2^{(-)}, 5/2^{(-)}$	1230.84	(+)
2990.6 5	6.0 15	4358.37	$(3/2^{-}, 5/2^{-})$	1367.76	
3007.6 5	8.1 15	3446.58	1/2(+),3/2,5/2	439.159	(*)
^x 3107.9 9	4.6 16				
3147.30 24	19.4 19	4189.39	$3/2^{(-)}, 5/2^{(-)}$	1042.034	(*)
^x 3224.4 ^c 3	9.7 11				

-

$\gamma(^{91}Sr)$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{d}	E _i (level)	J_i^π	E_f	J_f^π	Eγ‡	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}
3270.9 3	13.2 18	3364.68	1/2,3/2,5/2	93.628	$(3/2)^+$	3938.7 ^e 5	5.4 11	3938.42?	$(1/2^+, 3/2, 5/2)$	0	$5/2^{+}$
3284.7 8	4.8 14	4327.73	$1/2^{(-)}$ to $5/2^{(-)}$	1042.034	(+)	3949.56 23	19.1 <i>16</i>	4043.33	$3/2^{(-)}, 5/2^{(-)}$	93.628	$(3/2)^+$
3302.2 ^e 10	4.1 16	3395.5?	$(1/2^+, 3/2, 5/2)$	93.628	$(3/2)^+$	3984.7 <i>3</i>	12.3 13	4078.30	$3/2^{(-)}, 5/2^{(-)}$	93.628	$(3/2)^+$
3337.8 5	6.5 17	3776.62	1/2,3/2,5/2	439.159	(+)	4043.26 22	22.0 16	4043.33	$3/2^{(-)}, 5/2^{(-)}$	0	$5/2^{+}$
^x 3346.2 ^c 6	5.3 24					^x 4061.3 5	3.4 12				
3353.1 6	6.0 21	3446.58	1/2 ⁽⁺⁾ ,3/2,5/2	93.628	$(3/2)^+$	4063.9 7	1.3 9	4157.55	$3/2^{(-)}, 5/2^{(-)}$	93.628	$(3/2)^+$
^x 3376.5 3	84					4078.25 19	121 6	4078.30	$3/2^{(-)}, 5/2^{(-)}$	0	$5/2^{+}$
3395.4 ^e 4	9.6 17	3395.5?	$(1/2^+, 3/2, 5/2)$	0	$5/2^{+}$	4095.7 <i>3</i>	7.1 9	4189.39	$3/2^{(-)}, 5/2^{(-)}$	93.628	$(3/2)^+$
3410.7 ^e 8	2.4 16	4453.0?	$(1/2^+, 3/2, 5/2)$	1042.034	$(^{+})$	4157.48 22	20.8 15	4157.55	$3/2^{(-)}, 5/2^{(-)}$	0	$5/2^{+}$
3446.50 20	44 <i>3</i>	3446.58	1/2 ⁽⁺⁾ ,3/2,5/2	0	$5/2^{+}$	4171.7 <i>3</i>	8.3 9	4265.50	$3/2^{(-)}, 5/2^{(-)}$	93.628	$(3/2)^+$
3599.67 19	309 16	3693.23	$1/2^{(-)}$ to $5/2^{(-)}$	93.628	$(3/2)^+$	4189.2 <i>3</i>	6.9 8	4189.39	$3/2^{(-)}, 5/2^{(-)}$	0	$5/2^{+}$
3604.3 6	11 5	4043.33	$3/2^{(-)}, 5/2^{(-)}$	439.159	$(^{+})$	^x 4224.8 6	3.0 6				
3639.14 22	36 <i>3</i>	4078.30	$3/2^{(-)}, 5/2^{(-)}$	439.159	$(^{+})$	4234.1 <i>3</i>	6.5 7	4327.73	$1/2^{(-)}$ to $5/2^{(-)}$	93.628	$(3/2)^+$
3643.75 ^e 23	23.3 23	3643.81?	$(1/2^+, 3/2, 5/2)$	0	$5/2^{+}$	4249.0 ^e 3	10.1 10	4249.1?	$(1/2^+, 3/2, 5/2)$	0	$5/2^{+}$
3682.9 7	2.4 13	3776.62	1/2,3/2,5/2	93.628	$(3/2)^+$	4253.7 ^e 3	11.2 11	4253.8?	$(1/2^+, 3/2, 5/2)$	0	$5/2^{+}$
3736.5 4	17 4	3736.80	1/2 ⁽⁺⁾ ,3/2,5/2	0	$5/2^{+}$	4265.45 21	42.5 25	4265.50	$3/2^{(-)}, 5/2^{(-)}$	0	$5/2^{+}$
3745.9 ^e 5	6.0 14	3839.4?	$(1/2^+, 3/2, 5/2)$	93.628	$(3/2)^+$	4297.1 ^e 4	3.4 5	4391.0?	$(1/2^+, 3/2, 5/2)$	93.628	$(3/2)^+$
3800.7 ^e 5	4.5 10	4240.1?	(1/2, 3/2, 5/2)	439.159	(*)	4357.9 7	1.6 5	4358.37	$(3/2^{-}, 5/2^{-})$	0	$5/2^{+}$
3839.3 ^e 3	18.2 19	3839.4?	$(1/2^+, 3/2, 5/2)$	0	5/2+	4391.3 ^e 9	1.6 5	4391.0?	$(1/2^+, 3/2, 5/2)$	0	5/2+
3844.33 ^e 25	30.2 25	3938.42?	$(1/2^+, 3/2, 5/2)$	93.628	$(3/2)^+$	4453.1 ^e 4	4.3 5	4453.0?	$(1/2^+, 3/2, 5/2)$	0	$5/2^{+}$
3888.4 4	8.4 11	4327.73	$1/2^{(-)}$ to $5/2^{(-)}$	439.159	$(^{+})$	*4544.1 5	1.6 4				
*3906.2 9	2.8 9					4699.3 ^e 7	0.5 3	4793.1	$(3/2^{-}, 5/2^{-})$	93.628	$(3/2)^+$

[†] Additional information 24.
[‡] From 1976Gl02, except As noted.

[#] From $\alpha(K)$ exp.

[@] From curved-crystal spectrometer measurement (1979Bo26).

[&] Transition identified only in coincidence.

^{*a*} Transition tentatively placed by the evaluator.

^{*b*} From $\gamma\gamma$ coin (1976Gl02).

^c Placed by 1976Gl02 from a tentative 5289.2 level; however, TAGS data from 1997Gr09 show that I γ is far too large for that placement to be correct.

^d For absolute intensity per 100 decays, multiply by 0.0338 *18*.

^e Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

91 Rb β^- decay 1976Gl02,1997Gr09

 $^{91}_{38}{
m Sr}_{53}$

⁹¹**Rb** β^- decay 1976Gl02,1997Gr09

 $^{91}_{38}{\rm Sr}_{53}$

⁹¹Rb β^- decay 1976Gl02,1997Gr09

⁹¹Rb β^- decay 1976Gl02,1997Gr09

Decay Scheme (continued)

 $^{91}_{38}{\rm Sr}_{53}$