159 Tb(36 S,F γ) 2002St06

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013				

E=165 MeV; GAMMASPHERE array (93 Compton-suppressed Ge detectors arranged in 17 angular rings); measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ (DCO); minimum of four coincident γ rays required.

See 2013Hw01 for further discussion of data from 2002St06.

⁹¹Sr Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	5/2+	
993.21 [#] 10	$(9/2^+)$	
2076.81 15	$(11/2^{-})$	possible one-phonon octupole vibrational state, ($\nu d_{5/2}$) $\otimes 3^-$ (2013Hw01).
3115.10 [@] 18	$(15/2^{-})$	
3302.9 4	$(15/2^{-})$	J ^{π} : from 2013Hw01, by analogy with ⁸⁹ Sr. Possible structure: $\nu d_{5/2} \otimes 5^-$ (2013Hw01).
3574.59 [@] 20	$(17/2^{-})$	
3944.8 [@] 3	$(19/2^{-})$	
4276.6 4	$(21/2^+)$	possible structure: $(15/2^-)\otimes 3^-$ (2013Hw01).
4461.5 <i>4</i>		
4624.3 5		
4679.5? 6		
4689.2 5		
4828.1 5		
5002.3 6		
5248.7 7		
5365.2? 8		
5741.8 8		

[†] From least-squares fit to $E\gamma$.

[‡] From 2002St06, based on deduced level structure and measured transition multipolarities, except As noted; consistent with Adopted J^{π} values. however, see 2013Hw01 for discussion of structure of levels above 1 MeV.

[#] Band(A): π =+ sequence based on g.s..

^(a) Band(B): π =- intruder state (2013Hw01).

$\gamma(^{91}\mathrm{Sr})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	Comments
174.3 [@] 5		5002.3		4828.1			
246.4 3	10.1 9	5248.7		5002.3			
271.4 5	6.4 9	3574.59	$(17/2^{-})$	3302.9	$(15/2^{-})$		
313.1 5	2.6 4	5002.3		4689.2			
331.8 <i>3</i>	17 <i>1</i>	4276.6	(21/2 ⁺)	3944.8	(19/2 ⁻)	D	DCO=0.94 25 (D gated); DCO=0.39 19 (Q gated). $\Delta \pi$ =yes proposed by 2013Hw01 by analogy with ⁸⁹ Sr.
370.2 3	18 1	3944.8	$(19/2^{-})$	3574.59	$(17/2^{-})$	D	DCO=1.0 3 (D gated); 0.5 3 (Q gated).
377.5 ^{#@} 5	#	5002.3		4624.3		D	DCO=1.1 3 (D gated). contaminated by 378γ from ⁹⁹ Tc complementary fragment.
459.5 1	30 2	3574.59	$(17/2^{-})$	3115.10	$(15/2^{-})$		
493.1 5	4.9 5	5741.8		5248.7		D	DCO=0.9 6 (D gated); DCO=0.5 3 (Q gated).
685.7 ^{#@} 5	6 [#] 1	5365.2?		4679.5?			contaminated by 686γ from ⁹⁹ Tc complementary fragment.

Continued on next page (footnotes at end of table)

				159 Tb (36 S , F γ)		2002St	06 (continued)	
$\gamma(^{91}\mathrm{Sr})$ (continued)								
E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments	
829.7 3	17 2	3944.8	(19/2 ⁻)	3115.10	(15/2 ⁻)		E_{γ} , I_{γ} : contaminated by 830 γ from ⁹⁹ Tc complementary fragment.	
993.2 1	130 10	993.21	$(9/2^+)$	0.0	$5/2^{+}$			
1038.3 <i>1</i>	100 5	3115.10	$(15/2^{-})$	2076.81	$(11/2^{-})$	Q	DCO=1.08 11 (Q gated); DCO=1.31 17 (D gated).	
1083.6 <i>1</i>	115 8	2076.81	$(11/2^{-})$	993.21	$(9/2^+)$	D	DCO=0.7 3.	
1225.7 5	82	3302.9	$(15/2^{-})$	2076.81	$(11/2^{-})$			
1346.4 <i>3</i>	13 2	4461.5		3115.10	$(15/2^{-})$			
1509.1 5	7.1 9	4624.3		3115.10	$(15/2^{-})$			
1564.4 5	32	4679.5?		3115.10	$(15/2^{-})$			
1574.2 [@] 5	3.9 9	4689.2		3115.10	$(15/2^{-})$			
1713.0 5	5.3 9	4828.1		3115.10	(15/2-)			

[†] Uncertainty is stated by 2002St06 as 0.1-0.5 keV. Based on this, the evaluator has assigned uncertainties as follows: 0.1 keV for $I_{\gamma}>20$, 0.3 keV for $I_{\gamma}=10$ -20, and 0.5 keV for $I_{\gamma}<10$. * From DCO values obtained with gates on $\Delta J=2$, Q transitions, unless stated otherwise. # Contaminated by a line from ¹⁰⁰Tc.

[@] Placement of transition in the level scheme is uncertain.

 ${}^{91}_{38}{
m Sr}_{53}{
m -}3$

 $^{91}_{38}{
m Sr}_{53}$