${ }^{91}$ Rh ε decay (1.47 s) 2004De40

$\frac{\text { Type }}{} \quad \frac{\text { Author }}{\text { Full Evaluation }} \quad$| Cistory |
| :---: |
| Coral M. Baglin |

Parent: ${ }^{91} \mathrm{Rh}: \mathrm{E}=0.0 ; \mathrm{J}^{\pi}=\left(9 / 2^{+}\right) ; \mathrm{T}_{1 / 2}=1.47 \mathrm{~s} 22 ; \mathrm{Q}(\varepsilon)=9440 \mathrm{SY} ; \% \varepsilon+\% \beta^{+}$decay $=100.0$
${ }^{91} \mathrm{Rh}-\mathrm{Q}(\varepsilon)$: 9440400 from systematics (2012Wa38).
${ }^{91} \mathrm{Rh}-\mathrm{J}^{\pi}$: A g.s. $\mathrm{J}^{\pi}=9 / 2^{+}$is favored by systematics and is tentatively adopted by 2004De40. Such an assignment is consistent with β feedings to levels in ${ }^{91} \mathrm{Ru}$.
${ }^{91} \mathrm{Rh}-\mathrm{T}_{1 / 2}$: measured using a macrocycle of beam-on followed by a beam-off period with on/off times chosen to suit the expected half-life of the isotope studied. A time-to-digital converter was started at the beginning of each macrocycle, recording the time of each triggered event relative to the start. Except for the 533γ, half-lives based on the time behavior of each γ were determined. The half-life assigned to ${ }^{91} \mathrm{Rh}$ ground-state decay is the weighted average of the values for the 890γ and $973 \gamma, 1.40 \mathrm{~s} 33$ and 1.52 s 29, respectively.
${ }^{91} \mathrm{Rh}$ source produced in the ${ }^{58} \mathrm{Ni}\left({ }^{36} \mathrm{Ar}^{10+}, \mathrm{p} 2 \mathrm{n}\right)$ reaction; $\mathrm{E}=235 \mathrm{MeV}$ beam degraded to $\approx 121 \mathrm{MeV}$ near target center using a set of Ta degraders of varying thicknesses in the beam line in order to capitalize on the maximum cross-section of $11 \mu \mathrm{~b}$ for this reaction channel as calculated by HIVAP code. Nuclei recoiling out of the target were stopped and neutralized by 500 mbar of purified Ar gas inside a cell. Reaction products were ionized selectively, according to Z, using two dye lasers tuned to the resonant atomic transitions of Rh or Ru , thereby enhancing strongly the ionization and subsequent extraction of those nuclei and improving the statistical quality of γ spectra resulting from their decay. The laser-ionized nuclei were guided toward the LISOL mass separator by a sextupole ion guide. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma \gamma$ coin, $\beta \gamma$ (coin), $\mathrm{I}(\varepsilon+\beta)$, isotope $\mathrm{T}_{1 / 2}$ with two HPGe detectors arranged in a compact configuration around β-sensitive plastic $\Delta \mathrm{E}$ detectors that enclosed a tape station. shell-model calculations (for $\mathrm{J}^{\pi} \leq 15 / 2^{+}$and $\mathrm{E}<1500$).

$$
{ }^{91} \mathrm{Ru} \text { Levels }
$$

E(level)	$\mathrm{J}^{\pi \dagger}$	$\mathrm{T}_{1 / 2}$	Comments
0.0	(9/2 ${ }^{+}$)	8.0 s 4	$\mathrm{T}_{1 / 2}$: weighted average of 9 s 1 from activity (1983Ko43) and 7.85 s 40 from $394 \gamma(\mathrm{t})$ (2004De40).
889.8020	$\left(11 / 2^{+}\right)$		
973.1110	(13/2 ${ }^{+}$		

$$
\varepsilon, \beta^{+} \text {radiations }
$$

E(decay)	E(level)	$\mathrm{I} \beta^{+}$\#	$\mathrm{I} \varepsilon^{\#}$	$\underline{\log f^{\text {f }}}{ }^{\ddagger}$	$\mathrm{I}\left(\varepsilon+\beta^{+}\right)^{\dagger \#}$	Comments
(8466 SY)	973.11	51	0.041	5.6316	51	av $\begin{aligned} & \mathrm{E} \beta=3.50 \times 10^{3} 20 ; \varepsilon \mathrm{K}=0.007313 ; \varepsilon \mathrm{L}=0.00089 \quad 16 \\ & \varepsilon \mathrm{M}+=0.000214 \end{aligned}$ $\mathrm{I}\left(\varepsilon+\beta^{+}\right)$: consistent with 4.914 from intensity balance. Log f : the value is unrealistically lower than expectation for a $\Delta \mathrm{J}=2, \Delta \pi=$ no transition.
(8550 SY)	889.80	41	0.031	5.7417	41	$\begin{aligned} & \text { av } \mathrm{E} \beta=3.54 \times 10^{3} 20 ; \varepsilon \mathrm{K}=0.007013 ; \varepsilon \mathrm{L}=0.0008615 ; \\ & \varepsilon \mathrm{M}+=0.000204 \end{aligned}$
(9440 SY)	0.0	858	0.509	4.6413	868	$\mathrm{I}\left(\varepsilon+\beta^{+}\right)$: consistent with 4.213 from intensity balance. av $\mathrm{E} \beta=3.98 \times 10^{3} 20 ; \varepsilon \mathrm{K}=0.00518 ; \varepsilon \mathrm{L}=0.0006210$; $\varepsilon \mathrm{M}+=0.00014523$ $\mathrm{I} \beta^{+}$: from $\mathrm{I} \varepsilon=78$ to 94 (2004De40); 912 from intensity balance

\dagger 2004De40 calculated β-feeding to ${ }^{91} \mathrm{Rh}$ g.s. and excited states using the 511 keV annihilation line. Since all $\mathrm{I}(511 \gamma)$ that could not be associated with γ events visible in the γ-ray spectra were attributed to g.s. β feeding, branching to weakly populated states and to levels emitting γ-rays outside the $4 \mathrm{MeV} \gamma$-energy range may have been wrongly included in the g.s. branch, resulting in an underestimate of branching to some excited states.

$$
\underline{\varepsilon, \beta^{+} \text {radiations (continued) }}
$$

* Values should probably be regarded as lower limits; the large Q value suggests the possibility of significant unobserved feeding to highly excited states whose deexcitation may reduce the intensity imbalance at lower-lying levels; the possible presence of γ-rays with $\mathrm{E} \gamma$ outside the $4-\mathrm{MeV}$ experimental energy window further increases the uncertainty in deduced intensity imbalances. See also the comment on $\mathrm{I}(\gamma+\mathrm{ce}) . \log f t$ values assume an uncertainty of 400 In Q from systematics.
\# Absolute intensity per 100 decays.

$$
\underline{\gamma\left({ }^{91} \mathrm{Ru}\right)}
$$

I γ normalization: from $\operatorname{Ti}(890 \gamma+973 \gamma)=9.014$; consistent with 0.127 assuming $\Sigma(\mathrm{I}(\gamma+\mathrm{ce})$ to g.s. $)=100-\mathrm{I} \varepsilon(\mathrm{g} . \mathrm{s})=$.148 .

E_{γ}	$\mathrm{I}_{\gamma}{ }^{\dagger}$	$\mathrm{E}_{i}($ level)	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult.	α^{\ddagger}	Comments
${ }^{3} 387.42$	35139							E_{γ} : This transition, with half-life of 1.46 s 11 , is not seen in the β-gated spectra of 2004De40, with or without lasers. It is, however, a strong line in the singles spectra, but only when the lasers are tuned to Rh. The authors conclude that this is evidence of an isomeric transition in either ${ }^{91} \mathrm{Rh}$ or ${ }^{91} \mathrm{Ru}$, the former being fed directly in the heavy-ion reaction or the latter being populated through the decay of ${ }^{91} \mathrm{Rh}$.
${ }^{x} 437.71$	100							
${ }^{5} 533.31$	2110							
${ }^{x} 821.11$	639							
889.82	5211	889.80	(11/2+ ${ }^{+}$		$\left(9 / 2^{+}\right)$			E_{γ} : placement from 'to be published' work of C . Rusu et al. (reference 26 in 2004De40); that work is still unpublished, but placement is confirmed In (${ }^{36} \mathrm{Ar}, 2 \mathrm{pn} \gamma$): $\mathrm{E}=111 \mathrm{MeV}$ (2013Zh10).
973.11	6111	973.11	$\left(13 / 2^{+}\right)$	0.0	(9/2+)	E2	0.00094114	$\begin{aligned} & \alpha=0.000941 \quad 14 ; \alpha(\mathrm{K})=0.00082512 ; \\ & \alpha(\mathrm{L})=9.55 \times 10^{-5} 14 ; \alpha(\mathrm{M})=1.750 \times 10^{-5} 25 ; \\ & \alpha(\mathrm{N}+. .)=2.97 \times 10^{-6} \\ & \alpha(\mathrm{~N})=2.82 \times 10^{-6} 4 ; \alpha(\mathrm{O})=1.467 \times 10^{-7} 21 \end{aligned}$ E_{γ} : placement taken by 2004De 40 from the literature. Mult.: from Adopted Gammas.

${ }^{\dagger}$ For absolute intensity per 100 decays, multiply by 0.08017 .

* Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
${ }^{x} \gamma$ ray not placed in level scheme.
${ }^{91} \mathbf{R h} \varepsilon$ decay (1.47 s) 2004De40
Legend
$\longrightarrow \mathrm{I}_{\gamma}<2 \% \times \mathrm{I}_{\gamma}^{\max }$
$\longrightarrow \mathrm{I}_{\gamma}<10 \% \times \mathrm{I}_{\gamma}^{\max }$
$\longrightarrow \mathrm{I}_{\gamma}>10 \% \times \mathrm{I}_{\gamma}^{\max }$
$\underline{\text { Decay Scheme }}$
Intensities: $\mathrm{I}_{(\gamma+c e)}$ per 100 parent decays
$\% \varepsilon+\% \beta^{+}=100.0 \stackrel{\left(9 / 2^{+}\right)}{\begin{array}{c}\mathrm{Q}_{\varepsilon}=9440 S Y \\ { }_{45}^{91} \mathrm{Rh}_{46}\end{array}}$

