58 Ni(40 Ca, α 2pn γ) 1993Ar02

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013			

1993Ar02: $E({}^{40}Ca)=187$ MeV; 99.7% ${}^{58}Ni$ target, NORDBALL array (15 HPGe detectors), 11 liquid-scintillator n detectors, 21-element Si ball for charged particle detection; measured E γ , I γ , γ anisotropy ratio [=2I γ (143°)/(I γ (79°)+I γ (101°))], $\gamma\gamma$ coin.

⁹¹Ru Levels

E(level) [†]	J#‡	Comments				
0.0	$(9/2^+)$					
973.3	$(13/2^+)$					
1871.5	$(17/2^+)$					
1892.7	$(13/2^{-})$					
2199.4	$(17/2^{-})$					
2253.2	$(15/2^{-})$	E(level): for adopted order of 361γ and 155γ ; order could not be established by $1993Ar02$.				
2368.5	$(21/2^+)$					
2408.6	$(17/2^{-})$					
2708.3	$(19/2^{-})$	E(level): for adopted order of 300γ and 845γ ; order could not be established by 1993 Ar02.				
2984.3	$(23/2^+)$					
3163.4	$(21/2^{-})$					
3191.4	$(25/2^+)$					
3553.4	$(23/2^{-})$					
3632.3	$(25/2^+)$					
3968.5	$(27/2^+)$					
4034.3	$(25/2^{-})$					
4150.2	$(29/2^+)$					
4378.0	$(27/2^{-})$					
4990.1	$(31/2^{-})$					
5107.5	$(33/2^+)$					
5960.2	$(35/2^+)$	E(level): for adopted order of 853γ and 123γ ; order could not be established by 1993Ar02.				
5994.4	(35/2)					
6083.1	$(37/2^{+})$					
6311	(37/2)					
6919 7107	(41/2)					
7197	(39/2)					
1313	$(41/2^{+})$ $(42/2^{-}/45/2^{-})$					
0140	(43/2, 43/2) $(45/2^{-} t_{2}, 40/2^{-})$					
9027	(43/2 10 49/2)					

[†] From least-squares fit to $E\gamma$, allowing equal weight for each γ .

[‡] Authors' values; based on measured γ anisotropy ratios, and the assumptions that essentially all levels deexcite to levels having equal or lower spin and that crossover transitions usually have mult=E2. Note that J values for π =– levels with E>4500 exceed those in Adopted Levels, because the 608 γ and 612 γ are interpreted as Δ J=2 (rather than Δ J=1) transitions by 1993Ar02.

$\gamma(^{91}\text{Ru})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	Comments
123.4	6.9 10	6083.1	$(37/2^+)$	5960.2	$(35/2^+)$		Anisotropy ratio (1993Ar02): 1.1 3.
155.4	11.2 11	2408.6	$(17/2^{-})$	2253.2	$(15/2^{-})$	D	Anisotropy ratio (1993Ar02): 0.88 15.
181.8	13.3 12	4150.2	$(29/2^+)$	3968.5	$(27/2^+)$	D	Anisotropy ratio (1993Ar02): 0.73 10.
207.1		3191.4	$(25/2^+)$	2984.3	$(23/2^+)$		I_{γ} : 33.8 21 for 207.1 γ +209.1 γ doublet (1993Ar02).
209.1		2408.6	$(17/2^{-})$	2199.4	$(17/2^{-})$		I_{γ} : 33.8 21 for 207.1 γ +209.1 γ doublet.
299.6	13.6 11	2708.3	$(19/2^{-})$	2408.6	$(17/2^{-})$	D	Anisotropy ratio (1993Ar02): 0.91 14.

Continued on next page (footnotes at end of table)

 $^{91}_{44}\rm{Ru}_{47}\text{-}1$

⁵⁸ Ni(⁴⁰ Ca, α 2pn γ) 1993Ar02 (continued)							
γ (⁹¹ Ru) (continued)							
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
306.7	3.4 10	2199.4	$(17/2^{-})$	1892.7	$(13/2^{-})$		Anisotropy ratio (1993Ar02): 1.1 5.
317.0	18.0 19	6311	$(37/2^{-})$	5994.4	$(35/2^{-})$	D	Anisotropy ratio (1993Ar02): 0.69 14.
327.8	30.4 17	2199.4	(17/2 ⁻)	1871.5	(17/2 ⁺)		Anisotropy ratio (1993Ar02): 1.26 10; interpreted by authors as a $\Delta J=0$ transition.
336.3	6.3 18	3968.5	$(27/2^+)$	3632.3	$(25/2^+)$		Anisotropy ratio (1993Ar02): 0.94 27.
343.6	18.9 <i>15</i>	4378.0	$(27/2^{-})$	4034.3	$(25/2^{-})$	D	Anisotropy ratio (1993Ar02): 0.79 11.
360.5	9.2 14	2253.2	$(15/2^{-})$	1892.7	$(13/2^{-})$	D	Anisotropy ratio (1993Ar02): 0.53 15.
390.2	11.4 15	3553.4	$(23/2^{-})$	3163.4	$(21/2^{-})$	D	Anisotropy ratio (1993Ar02): 0.87 18.
497.0	56 3	2368.5	$(21/2^+)$	1871.5	$(17/2^+)$	Q	Anisotropy ratio (1993Ar02): 1.61 15.
608.0	15.7 15	6919	(41/2 ⁻)	6311	(37/2 ⁻)	Q	Anisotropy ratio (1993Ar02): 1.47 22. Note that this transition is assigned as $\Delta J=1$ in Adopted Gammas.
612.1	36.6 21	4990.1	(31/2 ⁻)	4378.0	$(27/2^{-})$	Q	Anisotropy ratio (1993Ar02): 1.66 15. Note that adopted mult(612γ)=D+Q.
615.7 647.8	28.1 20 4.0 10	2984.3 3632.3	$(23/2^+)$ $(25/2^+)$	2368.5 2984.3	$(21/2^+)$ $(23/2^+)$	D	Anisotropy ratio (1993Ar02): 0.81 8.
777.2	10.0 15	3968.5	$(27/2^+)$	3191.4	$(25/2^+)$	D	Anisotropy ratio (1993Ar02): 0.65 17.
822.8	9.5 20	3191.4	$(25/2^+)$	2368.5	$(21/2^+)$		Anisotropy ratio (1993Ar02): 1.2 5.
824.7	20.0 22	4378.0	$(27/2^{-})$	3553.4	$(23/2^{-})$	Q	Anisotropy ratio (1993Ar02): 1.50 25.
844.9	10.1 20	3553.4	$(23/2^{-})$	2708.3	$(19/2^{-})$		Anisotropy ratio (1993Ar02): 1.2 4.
852.7	8.4 15	5960.2	$(35/2^+)$	5107.5	$(33/2^+)$	D	Anisotropy ratio (1993Ar02): 0.78 24.
870.8	23.9 21	4034.3	$(25/2^{-})$	3163.4	$(21/2^{-})$	Q	Anisotropy ratio (1993Ar02): 1.9 3.
898.2	93.5	18/1.5	$(1^{7}/2^{+})$	9/3.3	$(13/2^+)$	Q	Anisotropy ratio (1993Ar02): 1.42 10.
919.4	11.5 20	1892.7	(13/2)	973.3	(13/2*)		Anisotropy ratio (1993Ar02): 1.6 4; interpreted by authors as a $\Delta J=0$ transition.
957.3	30 4	5107.5	$(33/2^+)$	4150.2	$(29/2^+)$	Q	Anisotropy ratio (1993Ar02): 1.6 5.
958.7	31 4	4150.2	$(29/2^+)$	3191.4	$(25/2^+)$	Q	Anisotropy ratio (1993Ar02): 1.3 3.
964.2	25.0 24	3163.4	$(21/2^{-})$	2199.4	$(17/2^{-})$	Q	Anisotropy ratio (1993Ar02): 1.7 3.
973.3	100 3	973.3	$(13/2^+)$	0.0	$(9/2^+)$	Q	Anisotropy ratio (1993Ar02): 1.47 9.
975.6	9.2 15	6083.1	$(37/2^+)$	5107.5	$(33/2^+)$		
1004.3	36.0 25	5994.4	$(35/2^{-})$	4990.1	$(31/2^{-})$	Q	Anisotropy ratio (1993Ar02): 1.46 16.
1203.0	15.1 21	7197	$(39/2^{-})$	5994.4	$(35/2^{-})$	Q	Anisotropy ratio (1993Ar02): 1.4 3.
1226.7	173	8146	$(43/2^-, 45/2^-)$	6919	$(41/2^{-})$		Anisotropy ratio (1993Ar02): 1.0 3.
1263.9	6.6 <i>14</i>	3632.3	$(25/2^+)$	2368.5	$(21/2^+)$	0	A minimum metic (1002 A 02) 1 5 5
1450.2	9.0 <i>1</i> 9	1313	$(41/2^{+})$ $(45/2^{-} t_{2} - 40/2^{-})$	0085.1	$(3//2^{-})$ $(12/2^{-} + 5/2^{-})$	Q	Anisotropy ratio (1993Ar02) : 1.5 5.
1401.2 X1701.0	1.51/	9027	(45/2 10 49/2)	0140	(45/2 ,45/2)		Amsouropy ratio (1993Af02): 1.3 4.
x1731.5	2.00 3810						
x2299.8	2.5 9						

 † $\Delta E_{\gamma}{=}0.2{\text{-}}1.0$ keV, depending on energy and intensity.

[±] Photon intensity relative to I(974 γ)=100 (1993Ar02).

[#] Based on measured γ anisotropy ratio; expected values are \approx 1.4 for stretched Q (or D Δ J=0), \approx 0.8 for stretched D.

 $x \gamma$ ray not placed in level scheme.

 $^{91}_{44}{
m Ru}_{47}$