⁵⁸Ni(³⁶Ar,2pnγ): E=111 MeV 2013Zh10

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013				

Compiled by E. McNeice and B. Singh (McMaster), May 30, 2013.

E(³⁶Ar)=111 MeV; 6.0 mg/cm² thick, 99.83% enriched ⁵⁸Ni target; beam from CIME cyclotron at GANIL; measured Eγ, Iγ, γγ-coin, DCO ratios (90°, 135°) ratios, γ(θ), γ(lin pol), (particle)-γ coin. γ-rays detected by the EXOGAM Ge clover detector array containing eleven clover-type Ge detectors. Neutrons detected using the Neutron Wall array composed of 50 organic liquid-scintillator elements. Light charged particles detected with the DIAMANT detector system consisting of 80 CsI scintillators.
2013Zh10 state that the level structure below the (13/2⁻) state will be discussed in a forthcoming paper.

⁹¹Ru Levels

E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^π ‡
0.0#	$(9/2^+)$	2200.3 6	$(17/2^{-})$	3164.6 6	$(21/2^{-})$	4847.4 8	$(27/2^{-})$
46.0 [#] 7	$(7/2^+)$	2254.3 5	$(15/2^{-})$	3192.3 [#] 9	$(25/2^+)$	4992.0 9	(29/2 ⁻)
435.8 4	$(11/2^+)$	2363.6 8	$(17/2^+)$	3259.0 7	$(21/2^{-})$	5096.8 [#] 10	$(31/2^+)$
890.2 [#] 7	$(11/2^+)$	2369.4 [#] 8	$(21/2^+)$	3555.0 7	$(23/2^{-})$	5100.3 8	$(29/2^{-})$
973.7 [#] 4	$(13/2^+)$	2409.8 6	$(17/2^{-})$	3633.4 9	$(25/2^+)$	5109.0 [#] 11	$(33/2^+)$
1659.8 6	$(11/2^+)$	2709.7 7	$(19/2^{-})$	3969.9 [#] 9	$(27/2^+)$	5996.7 11	$(33/2^{-})$
1872.2 [#] 6	$(17/2^+)$	2799.5 9	$(21/2^+)$	4035.8 7	$(25/2^{-})$		
1893.5 5	$(13/2^{-})$	2927.8 7	$(19/2^{-})$	4151.6 [#] 9	$(29/2^+)$		
2178.8 [#] 12	$(15/2^+)$	2985.3 [#] 9	$(23/2^+)$	4379.7 8	$(27/2^{-})$		

[†] From least-squares fit to $E\gamma$, allowing 1 keV uncertainty In $E\gamma$ for which the authors did state an uncertainty.

[‡] Authors' recommended values, supported by deduced band structure and measured transition multipolarities.

[#] Band(A): yrast π =+ sequence.

E_{γ}^{\ddagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [†]	Comments
46 [#]		46.0	$(7/2^+)$	0.0	$(9/2^+)$		
155.4 5	3.0 2	2409.8	$(17/2^{-})$	2254.3	$(15/2^{-})$	D	Mult.: DCO=0.65 7.
181.6 5	2.7 1	4151.6	$(29/2^+)$	3969.9	$(27/2^+)$	D	Mult.: DCO=0.68 5.
206.9 5	16.0 4	3192.3	$(25/2^+)$	2985.3	$(23/2^+)$	D	Mult.: DCO=0.68 2.
209.4 5	4.5 2	2409.8	$(17/2^{-})$	2200.3	$(17/2^{-})$		
234 [#]		1893.5	$(13/2^{-})$	1659.8	$(11/2^+)$		
236.8 5	2.9 3	3164.6	$(21/2^{-})$	2927.8	$(19/2^{-})$		
252.9 5	< 0.6	5100.3	$(29/2^{-})$	4847.4	$(27/2^{-})$		
296.0 5	1.6 2	3555.0	$(23/2^{-})$	3259.0	$(21/2^{-})$		
299.9 5	5.6 2	2709.7	$(19/2^{-})$	2409.8	$(17/2^{-})$	M1	Mult.: DCO=0.67 3; POL=-0.16 8.
306.8 5	1.9 2	2200.3	$(17/2^{-})$	1893.5	$(13/2^{-})$	Q	Mult.: DCO=1.04 10.
328.0 5	25.1 <i>1</i>	2200.3	$(17/2^{-})$	1872.2	$(17/2^+)$	E1	Mult.: DCO=1.06 5; POL= -0.25 4. Interpreted As D, $\Delta J=0$.
336.5 5	3.2 2	3969.9	$(27/2^+)$	3633.4	$(25/2^+)$		
343.8 5	5.2 1	4379.7	$(27/2^{-})$	4035.8	$(25/2^{-})$	M1	Mult.: DCO=0.55 5; POL=-0.07 3.
360.6 5	5.9 2	2254.3	$(15/2^{-})$	1893.5	$(13/2^{-})$	M1	Mult.: DCO=0.68 4; POL=-0.15 5.
390.5 5	2.7 2	3555.0	$(23/2^{-})$	3164.6	$(21/2^{-})$	M1	Mult.: DCO=0.62 7; POL=-0.21 5.
435.9 5	2.4 2	2799.5	$(21/2^+)$	2363.6	$(17/2^+)$	E2	Mult.: DCO=1.02 8; POL=+0.17 7.
436.0 5	< 0.4	435.8	$(11/2^+)$	0.0	$(9/2^+)$		
455.0 5	1.0 1	3164.6	$(21/2^{-})$	2709.7	$(19/2^{-})$	D	Mult.: DCO=0.6 1.
491.4 5	4.2 2	2363.6	$(17/2^+)$	1872.2	$(17/2^+)$	M1	Mult.: DCO=0.7 2; POL=+0.07 2.
							interpreted by authors As D $\Delta J=0$ transition.

$\gamma(^{91}\text{Ru})$

Continued on next page (footnotes at end of table)

⁵⁸Ni(³⁶Ar,2pnγ): E=111 MeV 2013Zh10 (continued)

$\gamma(^{91}\text{Ru})$ (continued)

E_{γ}^{\ddagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
497.2 5	38.3 1	2369.4	(21/2+)	1872.2	(17/2+)	E2	Mult.: DCO=1.07 2; A_2 =+0.39 7; A_4 =-0.16 8; POL=+0.17 3.
516.4 5	1.1 <i>1</i>	2409.8	$(17/2^{-})$	1893.5	$(13/2^{-})$	E2	Mult.: DCO=1.1 <i>1</i> ; POL=+0.27 5.
519 [#]		2178.8	$(15/2^+)$	1659.8	$(11/2^+)$		
538.0 5	< 0.4	973.7	$(13/2^+)$	435.8	$(11/2^+)$	M1	Mult.: DCO=1.1 6 for gate on $\Delta J=1$, D 361 γ ; POL=-0.19 8.
549.3 5	2.4 2	3259.0	$(21/2^{-})$	2709.7	$(19/2^{-})$	M1	Mult.: DCO=0.54 5; POL=-0.09 1.
612.3 5	5.4 2	4992.0	$(29/2^{-})$	4379.7	$(27/2^{-})$	M1	Mult.: DCO=0.68 4; POL=-0.14 3.
615.8 5	30.0 5	2985.3	$(23/2^+)$	2369.4	$(21/2^+)$	M1	Mult.: DCO=0.50 2; POL=-0.07 1.
648.0 5	2.8 2	3633.4	$(25/2^+)$	2985.3	$(23/2^+)$		
686 [#]		1659.8	$(11/2^+)$	973.7	$(13/2^+)$		
720.7 5	0.7 1	5100.3	$(29/2^{-})$	4379.7	$(27/2^{-})$	M1	Mult.: DCO=0.57 10; POL=-0.11 3.
727.5 5	5.8 3	2927.8	$(19/2^{-})$	2200.3	$(17/2^{-})$	M1	Mult.: DCO=0.55 4; POL=-0.11 2.
754.5 5	1.7 2	3164.6	$(21/2^{-})$	2409.8	$(17/2^{-})$		
777.5.5	4.8 1	3969.9	$(27/2^{+})$	3192.3	$(25/2^+)$	MI	Mult.: DCO=0.6 7; POL=-0.08 7.
811.6.5	0.8 I	4847.4	(27/2)	4035.8	(25/2)	MI	Mult.: DCO=0.55 9; POL=-0.16 5.
823.0 5	6.8 2	3192.3	(25/2+)	2369.4	(21/2+)	E2	Mult.: DCO=0.96 4; A_2 =+0.205 5, A_4 =-0.02 1; POL=+0.073 6.
824.7 5	3.6 2	4379.7	$(27/2^{-})$	3555.0	$(23/2^{-})$		
844 #		890.2	$(11/2^+)$	46.0	$(7/2^+)$		
845.3 5	2.0 1	3555.0	$(23/2^{-})$	2709.7	$(19/2^{-})$	E2	Mult.: DCO=0.96 9; POL=+0.14 2.
871.2 5	10.5 1	4035.8	(25/2 ⁻)	3164.6	(21/2 ⁻)	E2	Mult.: DCO=0.91 <i>3</i> ; A ₂ =+0.23 <i>3</i> , A ₄ =-0.01 <i>1</i> ; POL=+0.081 <i>9</i> .
890 [#]		890.2	$(11/2^+)$	0.0	$(9/2^+)$		
898.5 5	73 1	1872.2	(17/2 ⁺)	973.7	$(13/2^+)$	E2	Mult.: DCO=1.01 <i>I</i> ; A ₂ =+0.33 <i>I</i> ; A ₄ =-0.01 <i>2</i> ; POL=+0.131 <i>6</i> .
919.8 5	11.3 <i>1</i>	1893.5	(13/2 ⁻)	973.7	$(13/2^+)$	E1	Mult.: DCO=0.99 4; POL=-0.07 1. Interpreted As D, ΔJ=0.
957.4 5	8.1 <i>3</i>	5109.0	$(33/2^+)$	4151.6	$(29/2^+)$	E2	Mult.: DCO=1.1 2; POL=+0.13 4.
959.4 5	9.6 <i>3</i>	4151.6	$(29/2^+)$	3192.3	$(25/2^+)$	E2	Mult.: DCO=1.03 5; POL=+0.07 2.
964.5 5	17.3 <i>3</i>	3164.6	$(21/2^{-})$	2200.3	$(17/2^{-})$	E2	Mult.: DCO=1.01 3; POL=+0.17 1.
973.5 5	100	973.7	(13/2+)	0.0	(9/2+)	E2	Mult.: DCO=0.95 2; A ₂ =+0.39 3, A ₄ =-0.02 5; POL=+0.139 4.
1003 [#]		1893.5	$(13/2^{-})$	890.2	$(11/2^+)$		
1004.7 5	1.7 <i>1</i>	5996.7	$(33/2^{-})$	4992.0	$(29/2^{-})$	E2	Mult.: DCO=0.9 1; POL=+0.13 3.
1126.9 5	0.8 1	5096.8	$(31/2^+)$	3969.9	$(27/2^+)$	0	Mult.: DCO=0.96 9.
1263.9 5	4.9 2	3633.4	(25/2+)	2369.4	(21/2+)	Ē2	Mult.: DCO=0.99 6; A ₂ =+0.41 4, A ₄ =-0.01 <i>I</i> ; POL=+0.12 2.
1280.7 5	2.1 8	2254.3	$(15/2^{-})$	973.7	$(13/2^+)$	E1	Mult.: DCO=0.6 1; POL=+0.14 4.
1614 [#]		1659.8	$(11/2^+)$	46.0	$(7/2^+)$,
1660#		1650.9	$(11/2^+)$	0.0	$(0/2^+)$		
1000		1039.8	(11/2)	0.0	(9/2)		

[†] From measured DCO ratios and polarization, POL. Expected DCO values are ≈ 1 for stretched Q and ≈ 0.6 for pure stretched D if gated on stretched Q transitions, but ≈ 1.6 for stretched Q and ≈ 1 for for pure stretched D when gated by pure stretched D. For D+Q transitions, DCO values lie between 0.6 and 1.0, depending on δ . Stretched Q gating transitions were used, unless otherwise stated. POL values are negative for pure stretched M1 and nonstretched E1 transitions, and positive for pure stretched E1 and E2 transitions.

 \ddagger Uncertainties are stated to be within 0.5 keV (2013Zh10). The evaluators has, therefore, assigned 0.5 keV to all data.

[#] 2013Zh10 report that details of this transition will be discussed in a forthcoming publication.

⁵⁸Ni(³⁶Ar,2pnγ): E=111 MeV 2013Zh10

 $^{91}_{44}{
m Ru}_{47}$

 $^{91}_{44}{
m Ru}_{47}$

⁵⁸Ni(³⁶Ar,2pnγ): E=111 MeV 2013Zh10

 $^{91}_{44}{
m Ru}_{47}$