Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013							

 $Q(\beta^{-})=-12520 SY; S(n)=14910 SY; S(p)=1200 SY; Q(\alpha)=-3530 SY$ 2012Wa38 $\Delta Q(\beta)=640, \Delta S(n)=570, \Delta S(p)=400, \Delta Q(\alpha)=400$ (2012Wa38).

Q(\varepsilon p)=4640 400 (2012Wa38; syst).

Production: Ni(¹⁰⁶Cd,x), E(¹⁰⁶Cd)=60 MeV/nucleon (1994He28; see also 1995Mo26 and 1995He39). ⁵⁴Fe(⁴⁰Ca,p2n γ), E=130 MeV (2005Ma55). ⁵⁸Ni(³⁶Ar,P2N), E=121 MeV (2004De40).

A В

91Rh Levels

Cross Reference (XREF) Flags

 54 Fe(40 Ca,p2n γ) 9 Be(112 Sn,X γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
0.0 [@]	(9/2+)	1.47 [#] s 22	AB	$\%\varepsilon + \%\beta^+ = 100; \ \%\beta^+ p = 1.3 \ 5 \ (2012Lo08)$ J ^{π} : 9/2 ⁺ favored from systematics (2004De40). However, 2012Au07 propose 7/2 ⁺ , also attributed to systematics.		
172.9 ^{&} 4	(1/2 ⁻)	1.46 s <i>11</i>	Α	%IT=?; $\%\varepsilon + \%\beta^+$ =? J ^{π} : level possibly analogous to β -decaying 1/2 ⁻ isomeric states in the ⁸⁹ Tc and ⁸⁷ Nb isotones. T _{1/2} : from 2004De40.		
792.1 ^{&} 3	(5/2 ⁻)		A	E(level): order of 500 γ -619 γ cascade not established so an alternative value of E=683 is possible. J ^{π} : band assignment.		
840.41 [@] 10	$(13/2^+)$		Α	J^{π} : band assignment.		
1292.07 ^{&} 24	$(9/2^{-})$		Α	J^{π} : band assignment.		
1787.01 [@] 23	$(17/2^+)$		Α	J^{π} : band assignment.		
1905.45 ^{&} 24	$(13/2^{-})$		Α	J^{π} : band assignment.		
2277.7 ^{&} 4 2568.3 4	(17/2 ⁻)		A A	J^{π} : band assignment.		
2655.4 [@] 3 2873.5 5	(21/2 ⁺)		A A	J^{π} : band assignment. E(level): order of 439 γ -305 γ cascade not established so an alternative value of E=3007 is possible.		
3102.6 [@] 4	$(25/2^+)$		Α	J^{π} : band assignment.		
3114.2 ^{&} 4			Α			
3133.9 5			Α			
3312.3 6			A			
4135.9 5	$(29/2^+)$		Α	J^{π} : band assignment.		
5218.5 [@] 5			Α	J^{π} : possibly (33/2 ⁺) as shown in table I of 2005Ma55 for level fed by 665 γ .		
5883.6 [@] 6			Α			
7019.6 [@] 7			Α			

[†] From least-squares fit to $E\gamma$.

[‡] Tentative values based on π =+ and π =- sequences observed In (⁴⁰Ca,p2n γ) (2005Ma55) and consistent with authors' spherical shell-model calculations In (π 2p_{1/2},1g_{9/2}) model space.

⁹¹Rh Levels (continued)

 $\gamma(^{91}\text{Rh})$

[#] Weighted mean from $890\gamma(t)$ and $973\gamma(t)$ following ⁹¹Rh ε decay (2004De40). Measured using a macrocycle of a beam-on period followed by a beam-off period, with on/off times tailored to suit the expected half-life of the isotope of interest. A time-to-digital converter was started at the beginning of each macrocycle to provide the time of each triggered event relative to the start. others: 1.7 s 2 (2001Ki13); also, 1994He28 note that the observation of ⁹¹Rh in their study implies a mean life in excess of the ≈ 150 ns flight time through the fragment separator.

[@] Band(A): π =+ g.s. band.

& Band(B): π =- sequence. Based on presumed 1/2⁻ isomer.

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]
792.1	$(5/2^{-})$	619.2 2	100	172.9	$(1/2^{-})$	
840.41	$(13/2^+)$	840.4 <i>1</i>	100	0.0	$(9/2^+)$	(E2)
1292.07	$(9/2^{-})$	500.0 2		792.1	$(5/2^{-})$	
		1292.1 <i>3</i>		0.0	$(9/2^+)$	
1787.01	$(17/2^+)$	946.6 2	100	840.41	$(13/2^+)$	
1905.45	$(13/2^{-})$	613.4 2	100 20	1292.07	$(9/2^{-})$	
		1065.0 <i>3</i>	34 11	840.41	$(13/2^+)$	
2277.7	$(17/2^{-})$	372.2 2	100	1905.45	$(13/2^{-})$	
2568.3		290.6 2	100	2277.7	$(17/2^{-})$	
2655.4	$(21/2^+)$	868.4 2	100	1787.01	$(17/2^+)$	(E2)
2873.5		305.2 2	100	2568.3		
3102.6	$(25/2^+)$	447.2 <i>1</i>	100	2655.4	$(21/2^+)$	(E2)
3114.2		836.5 2	100	2277.7	$(17/2^{-})$	
3133.9		856.2 <i>3</i>	100	2277.7	$(17/2^{-})$	
3312.3		438.8 <i>3</i>	100	2873.5		
4135.9	$(29/2^+)$	1033.3 <i>3</i>	100	3102.6	$(25/2^+)$	(E2)
5218.5		1082.6 2	100	4135.9	$(29/2^+)$	
5883.6		665.1 <i>3</i>	100	5218.5		
7019.6		1136.0 4	100	5883.6		

[†] From ⁵⁴Fe(⁴⁰Ca,p2n γ). mult based on angular distributions from oriented states; the evaluator has assigned $\Delta \pi$ =(No) for Q transitions In the g.s. band.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{91}_{45} Rh_{46}$

Adopted Levels, Gammas

 $^{91}_{45}\text{Rh}_{46}$