⁹¹Mo ε decay (64.6 s) 1976De37

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013				

Parent: ⁹¹Mo: E=652.9 *I*; $J^{\pi}=1/2^-$; $T_{1/2}=64.6$ s 6; $Q(\varepsilon)=4430$ 7; $\%\varepsilon+\%\beta^+$ decay=50.0 *16*

⁹¹Mo-%ε+%β⁺ decay: From Iβ⁺(105 level)/Iβ⁺(1312+1613 levels)≈0.15 (1956Sm96, scin, uncertainty unstated), the level scheme, and ε/β⁺(theory), Iγ normalization=0.96 6 (allowing 50% uncertainty in Iβ⁺(105 level)). With this 105(level) feeding and Iγ(652.9, ⁹¹Mo)=100 3 (1976De37), %IT=50.0 16; also, Iγ±=182 12 is expected, cf. measured Iγ±=147 15 (1976De37), 220 20 (1965Cr10), 140 20 (1956Sm96), 86 31 (1955Ax02, from Iβ⁺:I(653γ)=30 10:70 10).

Others: 1956Sm96, 1970He03, 1970De34, 1973Ni04.

⁹¹Nb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †
0	9/2+	6.8×10 ² y <i>13</i>
104.50 10	$1/2^{-}$	60.86 d 22
1186.61 16	$5/2^{-}$	
1312.60 14	$3/2^{-}$	
1612.53 <i>13</i>	$3/2^{-}$	
2345.24 17	$(3/2)^{-}$	

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)†	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(2738 7)	2345.24	1.13 9	0.57 4	5.03 4	1.70 13	av E β =760.9 32; ε K=0.294 3; ε L=0.0353 3; ε M+=0.00803 7
3.50×10 ³ 10	1612.53	20.7 16	3.5 3	4.45 4	24.2 19	av Eβ=1098.3 33; εK=0.1260 10; εL=0.01511 12; εM+=0.00343 3
3.80×10 ³ 10	1312.60	16.2 <i>13</i>	1.92 15	4.78 <i>4</i>	18.1 14	av Eβ=1238.3 33; εK=0.0927 7; εL=0.01110 8; εM+=0.002523 18
(3896 [#] 7)	1186.61	0.05 5	0.005 5	7.4 5	0.05 5	av Eβ=1297.5 33; εK=0.0820 6; εL=0.00983 7; εM+=0.002232 15
5012 50	104.50	63	0.2 1	5.94 22	63	av Eβ=1810.8 34; εK=0.03344 17; εL=0.003999 21; εM+=0.000908 5
						I(ε+β ⁺): based on Iβ ⁺ (105 level)/Iβ ⁺ (1312+1613 levels)≈0.15 (1956Sm96) with an evaluator-assigned uncertainty of 50%. Based, instead, on measured Iγ±=147 <i>15</i> (1976De37) and decay scheme, I(ε+β ⁺)≤7%.

[†] Values given without parentheses are based on β^+ endpoint energies of 3990 50, 2780 100 and 2480 100 reported by 1956Sm96.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

⁹¹Mo ε decay (64.6 s) 1976De37 (continued)

$\gamma(^{91}{\rm Nb})$

I γ normalization: From I $\beta^+(105 \text{ level})/I\beta^+(1312+1613 \text{ levels})\approx 0.15$ (1956Sm96, scin, uncertainty unstated), the level scheme, and ϵ/β^+ (theory), I γ normalization=0.96 6 (allowing 50% uncertainty in I $\beta^+(105 \text{ level})$). With this 105(level) feeding and I γ (652.9, ⁹¹Mo)=100 3 (1976De37), %IT=50.0 16; also, I γ ±=182 12 is expected, cf. measured I γ ±=147 15 (1976De37), 220 20

(1965Cr10), 140 20 (1956Sm96), 86 31 (1955Ax02, from $I\beta^+$:I(653 γ)=30 10:70 10).

1976De37:Ge(Li) anti-Compton spectrometer. An extended report of this work is available from 1975DeZX.

1970He03:Ge(Li) detectors; measured $E\gamma$, $I\gamma$.

1956Sm96: scin. Measured γ -spectra, $\gamma\gamma$, β singles and coincidence spectra.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
104.5 ^{&} 1		104.50	1/2-	0	9/2+	M4	168	α (K)=115.4 <i>17</i> ; α (L)=43.4 <i>7</i> ; α (M)=8.34 <i>13</i> ; α (N+)=1.176 <i>18</i> α (N)=1.140 <i>18</i> ; α (O)=0.0358 <i>6</i>
425.9 ^{<i>a</i>} 2 732.64 24 1032.74 24	0.35 5 0.35 5 1.10 4	1612.53 2345.24 2345.24	3/2 ⁻ (3/2) ⁻ (3/2) ⁻	1186.61 1612.53 1312.60	5/2 ⁻ 3/2 ⁻ 3/2 ⁻			
1082.18 18	1.04 7	1186.61	5/2-	104.50	1/2-	E2	0.000603 9	$\begin{aligned} &\alpha = 0.000603 \ 9; \ \alpha(\text{K}) = 0.000531 \ 8; \\ &\alpha(\text{L}) = 5.94 \times 10^{-5} \ 9; \\ &\alpha(\text{M}) = 1.045 \times 10^{-5} \ 15; \\ &\alpha(\text{N}+) = 1.616 \times 10^{-6} \ 23 \\ &\alpha(\text{N}) = 1.528 \times 10^{-6} \ 22; \\ &\alpha(\text{O}) = 8.80 \times 10^{-8} \ 13 \end{aligned}$
1158.54 <i>18</i> 1208.11 9	0.58 <i>4</i> 38.8 <i>12</i>	2345.24 1312.60	(3/2) ⁻ 3/2 ⁻	1186.61 104.50	5/2 ⁻ 1/2 ⁻	(M1(+E2))	0.000491 <i>11</i>	$\alpha = 0.000491 \ 11; \ \alpha(K) = 0.000427 \ 11; \alpha(L) = 4.72 \times 10^{-5} \ 10; \alpha(M) = 8.30 \times 10^{-6} \ 18; \alpha(N+) = 9.3 \times 10^{-6} \ 10 \alpha(N) = 1.22 \times 10^{-6} \ 3; \ \alpha(O) = 7.12 \times 10^{-8} \\ 22; \ \alpha(IPF) = 8.0 \times 10^{-6} \ 10$
1508.00 9 2240.7 <i>3</i>	50.4 <i>15</i> 1.51 6	1612.53 2345.24	3/2 ⁻ (3/2) ⁻	104.50 104.50	1/2 ⁻ 1/2 ⁻			

[†] Additional information 2.

[‡] Weighted average from 1976De37 and 1970He03, if not indicated otherwise. The 253.4 γ of 1970He03, not seen by 1976De37 (I γ <0.15), is not adopted. The energies measured by 1970De34 are systematically lower by \approx 1 keV.

[#] From 1976De37. The values from 1970He03 are less precise but agree with 1976De37 within the uncertainty limits.

[@] From Adopted Gammas.

[&] From 1970He03.

^a From 1976De37.

^b For absolute intensity per 100 decays, multiply by 0.48 3.

⁹¹Mo ε decay (64.6 s) 1976De37

Decay Scheme

⁹¹₄₁Nb₅₀

3