⁹¹Nb IT decay (3.76 μs) 1976Br14

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013			

Parent: ⁹¹Nb: E=2034.42 20; $J^{\pi}=(17/2^{-})$; $T_{1/2}=3.76 \ \mu s \ 12$; %IT decay=100.0 ⁹¹Nb-E, J^{π} , $T_{1/2}$: From Adopted Levels.

⁹¹Nb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	9/2+	6.8×10 ² y <i>13</i>	
104.62 5	$1/2^{-}$	60.86 d 22	
1187.1 4	$5/2^{-}$		
1790.6 4	$(9/2^{-})$		
1984.7 <i>4</i>	$(13/2^{-})$	10.0 ns 4	
2034.8 4	$(17/2^{-})$	3.76 µs 12	%IT=100

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

$\gamma(^{91}{\rm Nb})$

I γ normalization: [Ti(1083 γ)+Ti(1791 γ)+Ti(1985 γ)]=100. consistent with \approx 1.12 from Ti(50.1 γ)=100. Isomer produced by ⁸⁸Sr(⁶Li,3n γ), E=34 MeV. Ge(Li), FWHM=2.5 keV to 3.0 keV. Si(Li), FWHM=180 eV.

E_{γ}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{\dagger}	Comments
50.1 2	≈6	2034.8	(17/2 ⁻)	1984.7	(13/2 ⁻)	(E2)		13.9 3	$ \frac{\alpha(K)=9.64 \ 19; \ \alpha(L)=3.52 \ 9;}{\alpha(M)=0.635 \ 15;} \\ \frac{\alpha(N+)=0.0833 \ 19}{\alpha(N)=0.0821 \ 19;} \\ \frac{\alpha(O)=0.001211 \ 23}{\alpha(O)=0.001211 \ 23} $
(104.62 [#] 5)		104.62	1/2-	0	9/2+	M4		167.3	$\alpha(K)=114.7 \ 17; \ \alpha(L)=43.1 7; \ \alpha(M)=8.28 \ 12; \alpha(N+)=1.168 \ 17 \alpha(N)=1.132 \ 17; \alpha(O)=0.0356 \ 5$
194.1 <i>3</i>	31 3	1984.7	(13/2 ⁻)	1790.6	(9/2 ⁻)	E2		0.1051	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0900 \ 14; \\ &\alpha(\mathbf{L}) = 0.01250 \ 19; \\ &\alpha(\mathbf{M}) = 0.00221 \ 4; \\ &\alpha(\mathbf{N}+) = 0.000324 \ 5 \\ &\alpha(\mathbf{N}) = 0.000310 \ 5; \\ &\alpha(\mathbf{O}) = 1.359 \times 10^{-5} \ 21 \end{aligned}$
603.5 <i>3</i>	1.20 2 12	1790.6	$(9/2^{-})$	1187.1	5/2-				
1082.6 5	≈1 ^{@&}	1187.1	5/2-	104.62	1/2-	E2		0.000602 9	$\alpha = 0.000602 \ 9;$ $\alpha(K) = 0.000531 \ 8;$ $\alpha(L) = 5.93 \times 10^{-5} \ 9;$ $\alpha(M) = 1.044 \times 10^{-5} \ 15;$ $\alpha(N+) = 1.615 \times 10^{-6} \ 23$ $\alpha(N) = 1.527 \times 10^{-6} \ 22;$ $\alpha(O) = 8.79 \times 10^{-8} \ 13$
1790.6 5	33.5 10	1790.6	(9/2 ⁻)	0	9/2+	(E1+M2)	-0.15 15	0.000578 9	α=0.000578 9; α(K)=0.000106 18;

				⁹¹ Nb IT decay (3.76 μs) 1976Br14 (conti			s) 1976 E	Br14 (continued	
						γ (⁹¹ Nb)	(continued	<u>l)</u>	
Eγ	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. ^a	δ^{a}	$lpha^{\dagger}$	Comments
1984.6 5	57.7 10	1984.7	(13/2 ⁻)	0	9/2+	(M2+E3)	-0.13 4	0.000486 7	$\begin{array}{c} \alpha(\mathrm{L}) = 1.15 \times 10^{-5} \ 20; \ \alpha(\mathrm{M}) = 2.0 \times 10^{-6} \\ 4; \ \alpha(\mathrm{N}+) = 0.000458 \ 24 \\ \alpha(\mathrm{N}) = 3.0 \times 10^{-7} \ 5; \ \alpha(\mathrm{O}) = 1.7 \times 10^{-8} \ 3; \\ \alpha(\mathrm{IPF}) = 0.000458 \ 24 \\ \alpha = 0.000486 \ 7; \ \alpha(\mathrm{K}) = 0.000306 \ 5; \\ \alpha(\mathrm{L}) = 3.38 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 5.95 \times 10^{-6} \\ 9; \ \alpha(\mathrm{N}+) = 0.0001404 \ 20 \\ \alpha(\mathrm{N}) = 8.74 \times 10^{-7} \ 13; \ \alpha(\mathrm{O}) = 5.16 \times 10^{-8} \\ 8; \ \alpha(\mathrm{IPF}) = 0.0001395 \ 20 \end{array}$

[†] Additional information 1.
[‡] Intensity integrated over 0°, 45° and 90°, if not indicated otherwise.
[#] Not observed. Energy taken from adopted γ-radiations.

^(a) Doublet. ^(a) Intensity at θ =90°. ^(a) From Adopted Gammas.

^b For absolute intensity per 100 decays, multiply by 1.085 18.

