⁹⁰**Zr**(α,2**np**γ) **1973Gr31**

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013			

E=43 MeV. 98.3% 90 Zr target. CoaxialGe(Li) (FWHM=2.5 keV at 1173 keV) and planar Ge(Li) (for x rays, FWHM=650 eV at 122 keV). Measured E γ , I γ , excitation functions (E=37-43 MeV), α - γ (t) (deduced T_{1/2}, 10 ns lower limit), α - γ (θ) (θ =90°-155°), $\gamma\gamma$, and p γ .

⁹¹Nb Levels

E(level)	$J^{\pi \dagger}$
0	9/2+
1790.45 25	$(9/2^{-})$
1984.29 25	$(13/2^{-})$
2290.7 <i>3</i>	$(13/2)^+$
3110.1 5	$(17/2)^+$
3467.0 <i>6</i>	$(21/2)^+$

[†] From Adopted Levels.

γ (91Nb)

About 110 γ -rays were observed in 90 Zr(a,x γ); assignment to (α ,2np γ) was based on the shape of the excitation function with respect to (α ,2n γ), coincidences with charged particles, and coincidences with γ -rays which in turn are coincident with charged particles.

\mathbb{E}_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
193.8 <i>3</i>	65	1984.29	$(13/2^{-})$	1790.45	(9/2-)		A ₂ =+0.05 2, A ₄ =0.0.
356.9 <i>3</i>	61	3467.0	(21/2)+	3110.1	(17/2)+		I_{γ} : 16% prompt, 84% has $T_{1/2} \approx 120$ ns. $A_2 = +0.29$ 2, $A_4 = -0.10$ 3, mult=Q for doublet. I_{γ} : 100% prompt.
819.4 <i>3</i>	98	3110.1	$(17/2)^+$	2290.7	$(13/2)^+$	(E2)	A_2 =+0.31 2, A_4 =-0.10 3.
1790.4 <i>3</i>	69	1790.45	(9/2-)	0	9/2+		I_{γ} : 96% prompt, 4% has $T_{1/2}$ >200 ns. A_2 =+0.08 3, A_4 =+0.03 4.
1984.3 <i>3</i>	97	1984.29	$(13/2^{-})$	0	9/2+		I _y : 30% prompt, 70% has $T_{1/2} \approx 120$ ns. $A_2 = +0.05 \ 4$, $A_4 = 0.0$.
2290.7 3	100	2290.7	(13/2)+	0	9/2+	(E2)	I_{γ} : 30% prompt, 70% has $T_{1/2} \approx 120$ ns. $A_2 = +0.21$ 3, $A_4 = -0.09$ 5. I_{γ} : 87% prompt, 13% has $T_{1/2} > 200$ ns.

 $^{^{\}dagger}$ Stretched Q from $\alpha\text{-}\gamma(\theta),\,T_{1/2}{<}10$ ns for parent level.

