⁹⁰**Zr**(α,2**np**γ) **1973Gr31** | | History | | | | | | |-----------------|-----------------|----------------------|------------------------|--|--|--| | Туре | Author | Citation | Literature Cutoff Date | | | | | Full Evaluation | Coral M. Baglin | NDS 114, 1293 (2013) | 1-Sep-2013 | | | | E=43 MeV. 98.3% 90 Zr target. CoaxialGe(Li) (FWHM=2.5 keV at 1173 keV) and planar Ge(Li) (for x rays, FWHM=650 eV at 122 keV). Measured E γ , I γ , excitation functions (E=37-43 MeV), α - γ (t) (deduced T_{1/2}, 10 ns lower limit), α - γ (θ) (θ =90°-155°), $\gamma\gamma$, and p γ . ## ⁹¹Nb Levels | E(level) | $J^{\pi \dagger}$ | |-----------------|-------------------| | 0 | 9/2+ | | 1790.45 25 | $(9/2^{-})$ | | 1984.29 25 | $(13/2^{-})$ | | 2290.7 <i>3</i> | $(13/2)^+$ | | 3110.1 5 | $(17/2)^+$ | | 3467.0 <i>6</i> | $(21/2)^+$ | [†] From Adopted Levels. ## γ (91Nb) About 110 γ -rays were observed in 90 Zr(a,x γ); assignment to (α ,2np γ) was based on the shape of the excitation function with respect to (α ,2n γ), coincidences with charged particles, and coincidences with γ -rays which in turn are coincident with charged particles. | \mathbb{E}_{γ} | I_{γ} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbb{E}_f | \mathbf{J}_f^{π} | Mult. | Comments | |-----------------------|--------------|--------------|----------------------|----------------|----------------------|-------|---| | 193.8 <i>3</i> | 65 | 1984.29 | $(13/2^{-})$ | 1790.45 | (9/2-) | | A ₂ =+0.05 2, A ₄ =0.0. | | 356.9 <i>3</i> | 61 | 3467.0 | (21/2)+ | 3110.1 | (17/2)+ | | I_{γ} : 16% prompt, 84% has $T_{1/2} \approx 120$ ns. $A_2 = +0.29$ 2, $A_4 = -0.10$ 3, mult=Q for doublet. I_{γ} : 100% prompt. | | 819.4 <i>3</i> | 98 | 3110.1 | $(17/2)^+$ | 2290.7 | $(13/2)^+$ | (E2) | A_2 =+0.31 2, A_4 =-0.10 3. | | 1790.4 <i>3</i> | 69 | 1790.45 | (9/2-) | 0 | 9/2+ | | I_{γ} : 96% prompt, 4% has $T_{1/2}$ >200 ns. A_2 =+0.08 3, A_4 =+0.03 4. | | 1984.3 <i>3</i> | 97 | 1984.29 | $(13/2^{-})$ | 0 | 9/2+ | | I _y : 30% prompt, 70% has $T_{1/2} \approx 120$ ns. $A_2 = +0.05 \ 4$, $A_4 = 0.0$. | | 2290.7 3 | 100 | 2290.7 | (13/2)+ | 0 | 9/2+ | (E2) | I_{γ} : 30% prompt, 70% has $T_{1/2} \approx 120$ ns. $A_2 = +0.21$ 3, $A_4 = -0.09$ 5. I_{γ} : 87% prompt, 13% has $T_{1/2} > 200$ ns. | $^{^{\}dagger}$ Stretched Q from $\alpha\text{-}\gamma(\theta),\,T_{1/2}{<}10$ ns for parent level.