76 Ge(19 F,4n γ) 2010He15

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013							

 $E(^{19}F)=80$ MeV from the HI-13 tandem accelerator at the China Institute of Atomic Energy; 96% enriched, 2.2 mg/cm² thick ⁷⁶Ge target evaporated onto 10 mg/cm² Pb backing; 14 Compton-suppressed HPGe detectors (four at 90°, five at 48° and five at 132°); measured Ey, Iy, yy coin, $\gamma\gamma(\theta)$ (DCO) (DCO values unstated in 2010He15).

Theoretical interpretation is given in terms of weak coupling between a $g_{9/2}$ proton and 90 Zr core states (for low E), and multi-particle excitations for high-energy states.

⁹¹Nb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0@	$9/2^{+}$		
2034.0 8	$(17/2^{-})$	3.76 µs 12	$J^{\pi}, T_{1/2}$: from Adopted Levels.
0			deexcitation of this isomer not studied by 2010He15.
2290.4 [@] 3	$13/2^{+}$		
3110.0 [@] 5	$17/2^{+}$		
3466.4 [@] 6	$21/2^{+}$		
4096.5 7	19/2-		
4350.9 [@] 6	$21/2^{+}$		
4848.0 [@] 7	$23/2^{+}$		
5034.0 [@] 8	$(25/2^+)$		
5183.9 <mark>&</mark> 6	$(23/2^+)$		
5455.3 [@] 8	$(27/2^+)$		
5543.0 ^a 6	$(21/2^{-})$		
6087.9 <mark>&</mark> 7	$(25/2^+)$		
6273.3 ^a 7	$(25/2^{-})$		J ^{π} : inconsistent with proposed D 730 γ deexcitation to (21/2 ⁻) 5543. J=(19/2 to 23/2) if
			J(5543) is correct.
6518.3 [@] 8	$(29/2^+)$		
6918.8 ^{<i>a</i>} 8	$(27/2^{-})$		
7437.6 [@] 8	$(31/2^+)$		
8099.2 [@] 9	$(33/2^+)$		
8630.2? [#] 13			
8846.2 [@] 13	$(37/2^+)$		
9437.2? [#] 17			
10137.2 20			

[†] From least-squares fit to $E\gamma$ (by evaluator), assigning 1 keV uncertainty to all data; no uncertainty was stated by the authors.

[‡] Authors' proposed values. Based on measured DCO ratios and comparison with neighboring odd-a nuclides.

[#] Order of the 531γ - 807γ - 700γ cascade is not established, thus, alternative energy values are possible for the intermediate levels if the order differs from that shown in the level scheme in figure 1 of 2010He15.

[@] Band(A): sequence based on g.s..

& Band(B): sequence based on $(23/2^+)$.

^{*a*} Band(C): sequence based on $(21/2^{-})$.

⁷⁶Ge(¹⁹F,4nγ) **2010He15** (continued)

$\gamma(^{91}\text{Nb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
185.8 <i>3</i> 254.4 <i>3</i>	17 9 23 5	5034.0 4350.9	(25/2 ⁺) 21/2 ⁺	4848.0 4096.5	23/2 ⁺ 19/2 ⁻	D D	Mult.: (D) from DCO=0.6 <i>3</i> . authors propose M1. Mult.: D from DCO=0.56 <i>18</i> . M1 given in the authors' email reply, but E1 is implied by authors' level scheme.
356.4 <i>3</i> 421.1 <i>3</i>	57 8 36 8	3466.4 5455.3	21/2 ⁺ (27/2 ⁺)	3110.0 5034.0	17/2 ⁺ (25/2 ⁺)		Mult.: (Q) from DCO=1.3 <i>6</i> ; authors propose E2. Mult.: DCO=1.8 <i>9</i> . E2 indicated in the authors' email reply, but AJ=1 In their proposed level scheme.
497.1 <i>3</i>	82 9	4848.0	$23/2^+$	4350.9	21/2+		Mult.: DCO=1.3 7. authors propose M1.
531 " 607.5 <i>3</i>	15 9	8630.2? 5455.3	(27/2 ⁺)	8099.2 4848.0	$(33/2^+)$ $23/2^+$		Mult.: DCO=2.5 <i>10</i> . authors propose E2. coincident with 356 γ , 884 γ and 919 γ , but not with 421 γ .
645.5 <i>3</i> 661.6 <i>3</i> 700 [#]	9 <i>3</i> 528	6918.8 8099.2	(27/2 ⁻) (33/2 ⁺)	6273.3 7437.6	(25/2 ⁻) (31/2 ⁺)	D	Mult.: D from DCO=0.62 24. authors propose M1.
730.3 <i>3</i>	10 3	6273.3	(25/2 ⁻)	5543.0	(21/2 ⁻)		Mult.: D from DCO=0.58 24. authors propose M1, but their level level scheme requires a $\Delta J=2$ transition, inconsistent with DCO.
747 [#] 807 [#]		8846.2 9437-22	$(37/2^+)$	8099.2 8630.22	$(33/2^+)$		
819.6 <i>3</i> 884.5 <i>3</i>	100 <i>10</i> 33 6	3110.0 4350.9	17/2 ⁺ 21/2 ⁺	2290.4 3466.4	13/2 ⁺ 21/2 ⁺		Mult.: DCO=1.6 5; authors propose E2. DCO=0.8 3 Mult.: E1 chourn in the authors' amail raphy, but a $\Delta I=0$
904.0 <i>3</i>	5.7 23	6087.9	(25/2+)	5183.9	(23/2+)	(Q+D)	Mult. ET shown in the authors' entail repry, but a $\Delta 3 = 0$, $\Delta \pi = \text{No}$ transition is implied by authors' level scheme. Mult.: DCO=1.3 3. E2 shown in the authors' email reply, but M1+E2 seems more likely based on authors' level scheme (where $\Delta I=1$, $\Delta \pi = \text{No}$)
919.4 <i>3</i>	27 5	7437.6	(31/2+)	6518.3	(29/2+)		Mult.: E2 listed in the authors' email reply, but $\Delta J=1$ from authors' level scheme, so M1+E2 seems more likely. DCO=1.2 6 is too imprecise to enable a definitive assignment
1063.0 <i>3</i>	15 7	6518.3	(29/2+)	5455.3	(27/2+)	D	Mult.: D from DCO=0.48 <i>16</i> . authors propose M1.
1717.4 <i>3</i> 1982.1 <i>3</i>	10 <i>5</i> 67 <i>8</i>	5183.9 7437.6	$(23/2^+)$ $(31/2^+)$	3466.4 5455.3	21/2 ⁺ (27/2 ⁺)	D	 Mult.: D from DCO=0.35 <i>17</i>. authors propose M1. Mult.: D from DCO=0.43 <i>20</i>. however, M1 is shown in the authors' email reply and E2 is required by authors' level scheme. coincident with 356γ, 422γ and 884γ, but not with 919γ
2062.5 3	21 5	4096.5	19/2-	2034.0	(17/2 ⁻)		DCO=1.4 6 Mult.: DCO=1.4 6. E2 shown in the authors' email reply, but their level scheme indicates a $\Delta J=1$ transition, making M1+E2 more likely.
2076.5 3	15 4	5543.0	(21/2 ⁻)	3466.4	21/2+	D	Mult.: D from DCO=0.40 <i>15</i> . M1 shown in the authors' email reply, but E1 required by authors' level scheme. However, DCO seems far too low for a D, $\Delta J=0$ transition.
2290.4 <i>3</i>	89 9	2290.4	$13/2^{+}$	0.0	9/2+	Q	Mult.: Q from DCO=1.2 3; authors propose E2.

[†] From e-mail reply on Oct 24, 2010 from C. He (first author of 2010He15), unless otherwise stated.

[‡] DCO values correspond to $48^{\circ}(132^{\circ})$ and 90° geometry with gates on $\Delta J=2$, Q transitions. Expected ratios are ≈ 1.0 for $\Delta J=2$, Q and ≈ 0.6 for $\Delta J=1$, D transitions. assignments are taken from e-mail reply of Oct 24, 2010 from C. He (first author of 2010He15), except as noted; based on indicated DCO ratios, but those data cannot determine $\Delta \pi$ and many have such large uncertainties that even ΔJ assignments become difficult. IT should also be noted that several assignments given in the email reply

Continued on next page (footnotes at end of table)

76 Ge(19 F,4n γ) 2010He15 (continued)

 γ (⁹¹Nb) (continued)

are inconsistent with the authors' level scheme (as noted here for the relevant transitions). [#] From level-scheme Figure 1 of 2010He15. Order of the 531γ -80 γ 7-700 γ cascade is not established.

⁷⁶Ge(¹⁹F,4nγ) 2010He15

 $^{91}_{41}\rm{Nb}_{50}$