${ }^{76} \mathbf{G e}\left({ }^{19} \mathbf{F}, 4 \mathbf{n} \gamma\right) \quad \mathbf{2 0 1 0 H e} 15$
$\frac{\text { Type }}{\text { Full Evaluation }} \frac{\text { Author }}{\text { Coral M. Baglin }} \quad \frac{\text { Citation }}{\text { NDS 114, 1293 (2013) }} \quad \frac{\text { Literature Cutoff Date }}{1-S e p-2013}$
$\mathrm{E}\left({ }^{19} \mathrm{~F}\right)=80 \mathrm{MeV}$ from the HI-13 tandem accelerator at the China Institute of Atomic Energy; 96% enriched, $2.2 \mathrm{mg} / \mathrm{cm}^{2}$ thick
${ }^{76} \mathrm{Ge}$ target evaporated onto $10 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{~Pb}$ backing; 14 Compton-suppressed HPGe detectors (four at 90°, five at 48° and five at 132°); measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma \gamma$ coin, $\gamma \gamma(\theta)(\mathrm{DCO})(\mathrm{DCO}$ values unstated in 2010 He 15).
Theoretical interpretation is given in terms of weak coupling between a $\mathrm{g}_{9 / 2}$ proton and ${ }^{90} \mathrm{Zr}$ core states (for low E), and multi-particle excitations for high-energy states.
${ }^{91} \mathrm{Nb}$ Levels

$\mathrm{E}\left(\right.$ level) ${ }^{\dagger}$	$\mathrm{J}^{\pi \ddagger}$	$\mathrm{T}_{1 / 2}$	Comments
$0.0{ }^{\text {@ }}$	9/2+		
2034.08	(17/2-)	$3.76 \mu \mathrm{~s} 12$	$\mathrm{J}^{\pi}, \mathrm{T}_{1 / 2}$: from Adopted Levels. deexcitation of this isomer not studied by 2010 He 15 .
$2290.4{ }^{@} 3$	13/2+		
3110.0 @ 5	17/2+		
3466.4@ 6	21/2+		
4096.57	19/2-		
4350.9@ 6	21/2+		
$4848.0{ }^{@} 7$	23/2+		
5034.0 @ 8	$\left(25 / 2^{+}\right)$		
5183.9 \& 6	(23/2+)		
$5455.3{ }^{\text {@ }} 8$	(27/2+)		
$5543.0^{a} 6$	(21/2-)		
6087.9\& 7	$\left(25 / 2^{+}\right)$		
$6273.3^{a} 7$	(25/2-)		J^{π} : inconsistent with proposed D 730γ deexcitation to $\left(21 / 2^{-}\right) 5543$. $\mathrm{J}=(19 / 2$ to $23 / 2)$ if $\mathrm{J}(5543)$ is correct.
$6518.3{ }^{\text {@ }} 8$	$\left(29 / 2^{+}\right)$		
$6918.8^{a} 8$	(27/2-)		
$7437.6{ }^{\text {@ }} 8$	$\left(31 / 2^{+}\right)$		
8099.2@ 9	(33/2+)		
8630.2? ${ }^{\text {\# }} 13$			
8846.2@ 13	$\left(37 / 2^{+}\right)$		
$\begin{aligned} & 9437.2 \text { ?\# } 17 \\ & 10137.220 \end{aligned}$			

${ }^{\dagger}$ From least-squares fit to $\mathrm{E} \gamma$ (by evaluator), assigning 1 keV uncertainty to all data; no uncertainty was stated by the authors.
\ddagger Authors' proposed values. Based on measured DCO ratios and comparison with neighboring odd-a nuclides.
\# Order of the $531 \gamma-807 \gamma-700 \gamma$ cascade is not established, thus, alternative energy values are possible for the intermediate levels if the order differs from that shown in the level scheme in figure 1 of 2010 He 15.
${ }^{@} \operatorname{Band}(\mathrm{~A})$: sequence based on g.s..
${ }^{\&} \operatorname{Band}(B)$: sequence based on $\left(23 / 2^{+}\right)$.
${ }^{a} \operatorname{Band}(\mathrm{C})$: sequence based on $\left(21 / 2^{-}\right)$.

${ }^{\dagger}$ From e-mail reply on Oct 24, 2010 from C. He (first author of 2010 He 15), unless otherwise stated.
${ }^{\ddagger} \mathrm{DCO}$ values correspond to $48^{\circ}\left(132^{\circ}\right)$ and 90° geometry with gates on $\Delta \mathrm{J}=2, \mathrm{Q}$ transitions. Expected ratios are ≈ 1.0 for $\Delta \mathrm{J}=2, \mathrm{Q}$ and ≈ 0.6 for $\Delta \mathrm{J}=1$, D transitions. assignments are taken from e-mail reply of Oct 24,2010 from C. He (first author of 2010 He 15), except as noted; based on indicated DCO ratios, but those data cannot determine $\Delta \pi$ and many have such large uncertainties that even $\Delta \mathrm{J}$ assignments become difficult. IT should also be noted that several assignments given in the email reply

Continued on next page (footnotes at end of table)
${ }_{41}^{91} \mathrm{Nb}_{50}-3 \quad$ From ENSDF $\quad{ }_{41}^{91} \mathrm{Nb}_{50}{ }^{-3}$
${ }^{76} \mathbf{G e}\left({ }^{19} \mathbf{F}, 4 \mathbf{n} \gamma\right) \quad$ 2010He15 (continued)
$\underline{\gamma\left({ }^{91} \mathrm{Nb}\right) \text { (continued) }}$
are inconsistent with the authors' level scheme (as noted here for the relevant transitions).
\# From level-scheme Figure 1 of 2010 He 15 . Order of the $531 \gamma-80 \gamma 7-700 \gamma$ cascade is not established.

${ }^{76} \mathbf{G e}\left({ }^{19} \mathbf{F}, \mathbf{4 n} \gamma\right) \quad$ 2010He15

Level Scheme
Legend

Intensities: Relative I_{γ}
$\rightarrow \mathrm{I}_{\gamma}<2 \% \times \mathrm{I}_{\gamma}^{\max }$
10137.2

$$
{ }_{41}^{91} \mathrm{Nb}_{50}
$$

${ }_{41}^{91} \mathrm{Nb}_{50}-5$ From ENSDF
${ }_{41}^{91} \mathrm{Nb}_{50}-5$
${ }^{76} \mathbf{G e}\left({ }^{19} \mathbf{F}, \mathbf{4} \mathbf{n} \gamma\right) \quad$ 2010He15

${ }_{41}^{91} \mathrm{Nb}_{50}$

