66 Zn(28 Si,2pn γ) 1993Si14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 114, 1293 (2013)	1-Sep-2013

 $E(^{28}Si)=95-120$ MeV; 5 HPGe detectors with BGO anti-Compton shields, 8 hexagonal NaI(Tl) detector multiplicity shield; $\theta=15^{\circ}$, 30° , 44° , 60° , 90° ; measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, γ anisotropy ratio, excit, T_{1/2} (using recoil distance method).

⁹¹Mo Levels

E(level) [†]	Jπ‡	T _{1/2} #	Comments
0.0	9/2+		
1414.3 [@] 3	$13/2^{+}$		
2068.3 [@] 5	$17/2^{+}$		
2267.8 [@] 6	$21/2^+$		
2940.3 6	$23/2^{+}$		
3545.4 [@] 7	$25/2^+$		
3810.3 7	$25/2^{-}$	17 ps 3	J^{π} : adopted $\pi = (+)$.
4342.5 7	27/2-	<1.4 ps	
4445.4 <mark>&</mark> 6	$25/2^+$		
4952.8 <mark>&</mark> 6	$27/2^{+}$		
4959.4 8	29/2-	<1.4 ps	
5244.0 9	31/2-		
5299.6? 9			
5488.4 ^{&} 7	$29/2^+$		
5817.8? 7			
6232.7 <mark>&</mark> 7	$31/2^+$		
6469.1 ^{&} 8	33/2+		

[†] From least-squares fit to $E\gamma$.

[‡] Authors' values, based on measured $\gamma(\theta)$, γ anisotropy ratios and γ cascade patterns.

[#] From RDM (1993Si14).

^(a) Band(A): π =+, seniority=3 states (1993Si14). [&] Band(B): π =+, seniority=5 states (1993Si14). The 25/2⁺ state configuration includes a significant seniority=3 component.

$\gamma(^{91}Mo)$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
199.5 <i>3</i>	99.9 <i>3</i>	2267.8	21/2+	2068.3	17/2+	Q	Mult.: anisotropy ratio=0.76 <i>1</i> , A_2 =+0.33 <i>2</i> , A_4 =-0.14 <i>1</i> (1993Si14).
236.4 3	15.8 2	6469.1	33/2+	6232.7	31/2+	D+Q	Mult.: anisotropy ratio=1.37 2, A_2 =-0.47 3, A_4 =+0.06 1 (1993Si14).
265.1 3	3.2 2	3810.3	25/2-	3545.4	25/2+		Mult.: anisotropy ratio=0.83 <i>I</i> , A_2 =+0.26 <i>5</i> , A_4 =+0.01 <i>2</i> (1993Si14). Interpreted by authors as a ΔJ =0, D transition.
284.6 3	12.6 2	5244.0	31/2-	4959.4	29/2-	D+Q	Mult.: anisotropy ratio=1.64 2, A_2 =-0.33 3, A_4 =+0.07 1 (1993Si14).
329.4 [#] 3	8.2 2	5817.8?		5488.4	29/2+		Mult.: anisotropy ratio=1.32 2, A_2 =+0.07 3, A_4 =+0.09 1 (1993Si14).
340.2 [#] 3	11.1 2	5299.6?		4959.4	29/2-	D+Q	Mult.: anisotropy ratio=1.52 3, A_2 =-0.37 3, A_4 =+0.16 1 (1993Si14).
507.6 <i>3</i>	19.2 <i>3</i>	4952.8	27/2+	4445.4	25/2+	D+Q	Mult.: anisotropy ratio=1.53 2, A_2 =-0.54 3, A_4 =+0.09 1 (1993Si14).

⁶⁶Zn(²⁸Si,2pnγ) 1993Si14 (continued)

$\gamma(^{91}Mo)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
532.2 3	21.2 3	4342.5	27/2-	3810.3	25/2-	D+Q	Mult.: anisotropy ratio=1.66 2, A_2 =-0.38 3, A_4 =+0.09 1 (1993Si14).
535.8 <i>3</i>	15.0 4	5488.4	29/2+	4952.8	27/2+	D+Q	Mult.: anisotropy ratio=1.76 2, A_2 =-0.44 4, A_4 =+0.14 2 (1993Si14).
605.1 <i>3</i>	28.3 6	3545.4	25/2+	2940.3	23/2+	D(+Q)	Mult.: anisotropy ratio=1.48 2, A ₂ =-0.25 3, A ₄ =-0.02 1 (1993Si14).
616.9 <i>3</i>	24.3 4	4959.4	29/2-	4342.5	27/2-	D+Q	Mult.: anisotropy ratio=1.54 2, A_2 =-0.51 5, A_4 =+0.14 2 (1993Si14).
654.0 <i>3</i>	99.8 <i>13</i>	2068.3	17/2+	1414.3	13/2+	Q	Mult.: anisotropy ratio=0.84 <i>I</i> , A ₂ =+0.24 <i>2</i> , A ₄ =-0.19 <i>I</i> (1993Si14).
672.3 <i>3</i>	82.5 12	2940.3	23/2+	2267.8	21/2+	D(+Q)	Mult.: anisotropy ratio=1.59 <i>I</i> , A ₂ =-0.28 <i>2</i> , A ₄ =+0.01 <i>I</i> (1993Si14).
744.3 <i>3</i>	20.3 5	6232.7	31/2+	5488.4	29/2+	D+Q	Mult.: anisotropy ratio=1.45 <i>4</i> , A ₂ =-0.53 <i>3</i> , A ₄ =+0.13 <i>1</i> (1993Si14).
869.7 <i>3</i>	26.7 8	3810.3	25/2-	2940.3	23/2+	D(+Q)	Mult.: anisotropy ratio=1.51 3, A_2 =-0.23 3, A_4 =-0.04 1 (1993Si14).
1414.3 3	100.0 16	1414.3	13/2+	0.0	9/2+	Q	Mult.: anisotropy ratio=0.76 <i>1</i> , A ₂ =+0.24 <i>3</i> , A ₄ =-0.07 <i>1</i> (1993Si14).
1942.8 <i>3</i>	10.8 7	5488.4	29/2+	3545.4	25/2+	Q	Mult.: anisotropy ratio=0.75 3, A_2 =+0.17 2, A_4 =-0.15 6 (1993Si14).
2012.4 3	8.0 9	4952.8	27/2+	2940.3	23/2+	Q	Mult.: anisotropy ratio=0.73 4, A ₂ =+0.21 9, A ₄ =-0.13 7 (1993Si14).
2177.8 <i>3</i>	15.7 9	4445.4	25/2+	2267.8	21/2+	Q	Mult.: anisotropy ratio=0.98 7, A_2 =+0.28 3, A_4 =-0.09 6 (1993Si14).

[†] From 1993Si14. The authors give an upper limit of 0.3 keV for ΔE_{γ} ; the evaluator has assigned 0.3 keV for all transitions.

^{\ddagger} Based on measured $\gamma(\theta)$ and γ anisotropy ratio given in comments on relevant γ . The anisotropy ratio (akin to a DCO ratio) is

I($\gamma_1(75 \text{ DEG})$ gated by $\gamma_2(45 \text{ DEG})$)/I($\gamma_1(15 \text{ DEG})$ gated by $\gamma_2(45 \text{ DEG})$); expected values are ≤ 0.9 for stretched Q (or D, $\Delta J=0$) transitions and ≥ 1.1 for D transitions (1993Si14). The authors assume that all stretched Q transitions are stretched E2.

[#] Placement of transition in the level scheme is uncertain.

 $^{91}_{42}{
m Mo}_{49}$

⁶⁶Zn(²⁸Si,2pnγ) 1993Si14

⁹¹₄₂Mo₄₉