${ }^{90} \mathbf{Z r}\left({ }^{17} \mathbf{O},{ }^{17} \mathbf{O}^{\prime}\right),\left({ }^{17} \mathbf{O},{ }^{17} \mathbf{O}^{\prime} \gamma\right)$
History
$\frac{\text { 1993Li24,2010Kr01,2015Cr02 }}{}$
$\frac{\text { Author }}{\text { S. K. Basu, E. A. Mccutchan }} \quad \frac{\text { Citation }}{\text { NDS 165,1 (2020) }} \quad \frac{\text { Literature Cutoff Date }}{1-M a r-2020}$

1993Li24: $\left({ }^{17} \mathrm{O}^{17}{ }^{17} \mathrm{O}^{\prime}\right), \mathrm{E}=1435 \mathrm{MeV}$. Measured scattered ${ }^{17} \mathrm{O}$ ions at various angles. Determined $\mathrm{B}(\mathrm{E} 2) \uparrow$ and $\mathrm{B}(\mathrm{E} 3) \uparrow$. Detector: ion chamber, plastic scintillator. Other: 1995Be12, 1992VaZW.
$1993 \mathrm{Ho} 03,1992 \mathrm{Ho} 02$: $\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}^{\prime}\right), \mathrm{E}=70 \mathrm{MeV}$. Measured scattered ${ }^{6} \mathrm{Li}$ ions at various angles from $\theta=4^{\circ}$ to 45°. Detector: magnetic spectrometer, FWHM $\approx 225 \mathrm{keV}$. Determined B(E2) \uparrow. Target: 97.67% enriched ${ }^{90} \mathrm{Zr}$.
2010 Kr01: $\left({ }^{6} \mathrm{Li}^{6}{ }^{6} \mathrm{Li}^{\prime}\right), \mathrm{E}=240 \mathrm{MeV}$. 90% enriched $5.0 \mathrm{mg} / \mathrm{cm}^{2}{ }^{90} \mathrm{Zr}$ target; measured scattered ${ }^{6} \mathrm{Li}$ ions at various angles from $\theta($ c.m. $)=4^{\circ}$ to 43°. Multipole-Dipole-Multipole (MDM) spectrometer at TAMU. Determined $B(E 2) \uparrow, B(E 3) \uparrow$. Double folding model analysis using density dependent M3Y NN effective interaction and with phenomenological Woods-Saxon potential.
2015Cr02: $\mathrm{E}\left({ }^{17} \mathrm{O}\right)=340 \mathrm{MeV}$ beam from the Tandem-ALPI accelerator complex of the Legnaro National Laboratories of INFN at Legnaro, Italy. Self-supporting target with thickness of $2 \mathrm{mg} / \mathrm{cm}^{2}$. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma(\theta)$ using the AGATA demonstrator consisting of three triple clusters of HPGe detectors and E (recoil), recoil- γ coincidences using two $\Delta \mathrm{E}-\mathrm{E}$ silicon telescopes (FWHM $\approx 0.3 \%$ at 340 MeV). Differential cross sections compared to the results of DWBA calculations using both the standard collective form factor and a form factor obtained by folding microscopically calculated transition densities. Comparison of data to $\left(\gamma, \gamma^{\prime}\right)$ and ($\mathrm{p}, \mathrm{p}^{\prime}$) data in the energy region of 6 to 11 MeV .

${ }^{90} \mathrm{Zr}$ Levels

E(level)	$\mathrm{J}^{\pi \dagger}$	Comments
0.0	0^{+}	
1760.7	0^{+}	
2186.3	$2^{+} \ddagger$	$\begin{aligned} & \mathrm{B}(\mathrm{E} 2) \uparrow=0.0666\left({ }^{6} \mathrm{Li}^{6}{ }^{6} \mathrm{Li}^{\prime}\right)(1993 \mathrm{Ho} 03) ; \mathrm{B}(\mathrm{E} 2) \uparrow=0.0439,\left({ }^{17} \mathrm{O},{ }^{17} \mathrm{O}^{\prime}\right)(1993 \mathrm{Li} 24), \mathrm{B}(\mathrm{E} 2) \uparrow=0.059+2-6 \\ & \left({ }^{6} \mathrm{Li}^{6}, \mathrm{Li}^{\prime}\right)(2010 \mathrm{Kr} 01) . \end{aligned}$
2319.0	$5{ }^{-}$	
2739.3	(4) ${ }^{-\#}$	
2747.9	$3^{-\ddagger}$	$\mathrm{B}(\mathrm{E} 3) \uparrow=0.027 \mathrm{5},\left({ }^{17} \mathrm{O},{ }^{17} \mathrm{O}^{\prime}\right)(1993 \mathrm{Li} 24) ; \mathrm{B}(\mathrm{E} 2) \uparrow=0.086+2-9\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}^{\prime}\right)(2010 \mathrm{Kr} 01)$.
3076.9	4^{+}	
3308.8	$2^{+}{ }^{+}$	
3448.2	6^{+}	
3842.2	2^{+}	$\mathrm{E}(\mathrm{level})$: cross section best reproduced by a calculation which considers only the Coulomb excitation contribution.
4223	$\left(2^{+}\right)^{\#}$	
4681	2^{+}	$\mathrm{E}($ level): excitation cross section measurements suggest that other sizable decay branches (apart from the observed 839γ and 4681γ) might exist from this level.
6424	1^{-}	$\mathrm{E}($ level): cross section not well reproduced by DWBA calculation using standard deformed potential model, better agreement obtained when nuclear contribution is calculated from a microscopic form factor. $\mathrm{E}($ level): dominant isoscalar component, exhausts 2.17% of the isoscalar dipole energy weighted sum rule strength.
${ }^{\dagger}$ From the Adopted Levels.		
${ }^{\ddagger}$ DWBA calculations with standard deformed potential model consistent with J^{π} from Adopted Levels.		

$$
\underline{\gamma\left({ }^{90} \mathrm{Zr}\right)}
$$

Yield ratio is determined from $\mathrm{Y}_{\mathrm{R}}=\mathrm{Y}\left(125^{\circ}-150^{\circ}\right) / \mathrm{Y}\left(100^{\circ}-125^{\circ}\right)$ where $\mathrm{Y}(\theta)$ is the yield at angle θ. The average for the known E2 ground state transitions from the 2186-, 3309-, and $3842-\mathrm{keV}$ levels is $\mathrm{Y}_{\mathrm{R}}=1.055$ (read by evaluators from Fig. 3 of 2015Cr02). For the 6.5 to 8 MeV energy interval, $\mathrm{Y}_{\mathrm{R}}=1.397$, and for the 6.5 to 10 MeV energy interval, $\mathrm{Y}_{R}=1.366$ (both read by evaluators from Figure 3 of 2015 Cr 02), suggesting dominant E1 character for transitions in this energy range, although the presence of M1 and E2 transitions cannot be excluded.

\qquad
${ }^{90} \mathbf{Z r}\left({ }^{17} \mathbf{O},{ }^{17} \mathbf{O}^{\prime}\right),\left({ }^{17} \mathbf{O},{ }^{17} \mathbf{O}^{\prime} \gamma\right) \quad$ 1993Li24,2010Kr01,2015Cr02 \quad Legend

Level Scheme

\author{

- - - - $\quad \gamma$ Decay (Uncertain)
}

