82 Se(11 B,3n γ) 2002Ra13

History							
Type Author		Citation	Literature Cutoff Date				
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020				

2002Ra13: E=37 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO); lifetimes by Doppler-shift attenuation method using GASP array consisting of 40 escape-suppressed HPGe detectors and an inner ball containing 80 BGO elements.

90Y Levels

For detailed shell-model configurations see Tables III, IV, VI and VII in 2002Ra13.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	2-	64.05 [@] h.5	
202.51 3	3-	01100 110	
682.02 ^b 6	7+	3.19 [@] h 6	J^{π} : from Adopted Levels.
2216.7 <mark>b</mark> 4	8+		•
2858.9 <mark>b</mark> 5	9+		
3097.1 ^b 6	10^{+}		
4212.6 <mark>b</mark> 6	11^{+}		
4518.6 <mark>b</mark> 6	12+		
4543.6 6	11^{+}		
5068.5 6			
5102.6 6	12^{-}		
5111.5 ^b 6	13+		
5359.7 <mark>b</mark> 6	14^{+}		
5525.6 6	$12^{(+)}$		
5541.2 6	$12^{(+)}$		
5674.3 6	$12^{(+)}$		
6065.0 6	13-		
6234.8 [°] 6	13-		
6822.6 6	13+		
6831.1 6	13+		
6898.2 ^C 6	15^{-}		
7355.6 ^a 6	$14^{(+)}$		
7882.7? ^a 6	15 ⁽⁺⁾	0.111 ^{&} ps 28	E(level): since the reversed ordering of the 538.7-527.2 cascade is not ruled out, this level is either at 7882.9 or 7894.4.
7994.1 ^c 6	$16^{(-)}$		
8421.4 ^a 6	$16^{(+)}$	0.57 ^{&} ps 8	
9006.0 ^a 6	$17^{(+)}$	0.37 ps 6	
9317.2 [°] 7		r · ·	
9635.2 ^a 7	(18^{+})	0.38 ps 6	

 † From least-squares fit to Ey, by evaluators.

[‡] As proposed in 2002Ra13, based on literature values for lower-lying states and multipolarity deduced from $\gamma\gamma(\theta)$ (DCO).

[#] From DSAM measurements (2002Ra13), except where noted.

[@] From the Adopted Levels.

[&] Since the reversed ordering of the 538.7-527.2 cascade is not ruled out, the lifetimes of the levels at 7882.9 and 8421.5 are affected by the ordering of this cascade.

^{*a*} Band(A): Band based on $14^{(+)}$.

^b Seq.(B): γ cascade based on 7⁺.

^c Seq.(C): Band based on 13⁻.

82 Se(11 B,3n γ) **2002Ra13** (continued)

$\gamma(^{90}Y)$

DCO ratios correspond to gates on $\Delta J=2$, Q transitions, unless otherwise stated. DCO ratios constructed from ratio of γ rays detected at an average of 35° and 145°, with γ rays detected at 90°. Expected ratios are 1.0 if gating and observed transitions are stretched transitions of pure and equal multipole order, 0.54 for a pure dipole transition gated on a stretched Q transition, and 1.85 for a Q transition gated on a dipole transition.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
202.51 3		202.51	3-	0.0	2-			E_{γ} : from the Adopted Gammas. Other: 202.6
238 2 1	74.0.2	3097 1	10^{+}	2858.9	9+	D		DCO=0.98 I (AI=1 dipole gated)
230.2 1	11.0.2	5359.7	14^{+}	5111.5	13+	D		DCO=0.51.6
305.9 1	18.0 1	4518.6	12+	4212.6	11+	D		DCO=0.54 /
390.9.3	0.5.1	6065.0	13-	5674.3	$12^{(+)}$	D		DCO-10.2 (AI-1 dipole gated)
170 51 5	0.5 1	682.02	7+	202.51	3-	D		E : from the Adopted Gammas Other: 479.5
479.31 5		002.02	/	202.51	5			(2002Ra13).
523.9 2	1.0 1	6065.0	13-	5541.2	$12^{(+)}$	D		DCO=0.52 7.
524.4 <i>1</i>	5.6 2	7355.6	$14^{(+)}$	6831.1	13+	D		DCO=0.50 1.
527.2 2	6.2 2	7882.7?	$15^{(+)}$	7355.6	$14^{(+)}$	D		DCO=0.30 2.
533.0 1	4.2 1	7355.6	$14^{(+)}$	6822.6	13^{+}	D		DCO=0.43 4.
538.7 1	5.8.2	8421.4	$16^{(+)}$	7882.7?	$15^{(+)}$	D		DCO=0.30.2
539.4.3	107	6065.0	13-	5525.6	$12^{(+)}$	D		DCO=0.63.8
584 5 1	5.0.2	9006.0	$17^{(+)}$	8421.4	12^{12}	D		DCO=0.65.8
593.0.2	784	5111.5	13+	4518.6	12+	D		De0=0.05 8.
620.2.3	1.0 4	0625.2	(10^{+})	0006.0	$12 \\ 17(+)$			
642.2.3	4.01	2858.0	(10)	9000.0 2216.7	1/* / Q+	D		DCO = 0.53 I
663.3.3	136	2030.9	9 15 ⁻	6234.8	0 13 ⁻			DCO=0.55 1.
833 1 3	14.0.5	6808 2	15	6065.0	13-	Q 0		DCO=1.02
800.2.6	23.0.8	5102.6	12-	4212.6	11+	У D		DCO=1.00 J. DCO=1.01.8 (AI=1 dipole gated)
898.8.2	11 1 2	5111.5	12	4212.0	11+	0		DCO=0.90.3
962 5 2	842	6065.0	13-	5102.6	12^{-11}	$\nabla + 0$		DCO=0.7.2 (AI=1 dipole gated)
1065.8.7	0.72 212	8421.4	$16^{(+)}$	7355.6	$12 \\ 14(+)$	DIQ		Deo=0.7 2 (AJ=1 uipole galed).
1005.0 2	2.12 121	7004.1	10^{-1}	6000 0	15-	D		$DCO_{-0} 5 l$
1095.9 2	1.51	/994.1	10	2007.1	10+	D		DCO=0.01 I (AI=1 dinala gatad)
1113.4 1	JO.4 2	4212.0	11	7004 1	$10 \\ 1c(-)$	D		$DCO=0.91$ I ($\Delta J=1$ dipole galed).
1323.1 3	0.4 I	9317.2	11+	7994.1	10	0		DCO = 1.91.2 (AI = 1 dimeter seted)
1333.7 3	14.5 2	4212.0	11	2007.1	9 · 10 ⁺	Q		$DCO=1.81.5 (\Delta J=1 \text{ dipole gated}).$
1421.0 1	27.03	4318.0	12	2007.1	10	V D O		$DCO=1.75.2$ ($\Delta J=1$ dipole gated).
1440.0 2	4.1 1	4343.0	11 0+	682.02	7+	D+Q M1+E2	0.69.5	$DCO=0.794$ ($\Delta J=1$ upple gated). Mult & $DCO=1.10.2$ gives $D+O$, non zero value
1554.74	100.0 5	2210.7	0	082.02	1	MIT+E2	-0.08 5	of δ suggests M1+E2.
1538.4 <i>1</i>	6.3 2	6898.2	15-	5359.7	14^{+}	D		DCO=0.60 6.
1546.0 <i>3</i>	7.7 1	6065.0	13-	4518.6	12^{+}	D		DCO=1.07 2 (Δ J=1 dipole gated).
1711.0 6	4.3 <i>3</i>	6822.6	13+	5111.5	13+			
1716.1 5	1.3 6	6234.8	13-	4518.6	12^{+}	D		DCO=0.45 2.
1719.6 2	2.2 1	6831.1	13+	5111.5	13+	D		DCO=1.4 3 (Δ J=1 dipole gated).
1719.9 <i>4</i>	1.1 <i>1</i>	6822.6	13+	5102.6	12^{-}	D		DCO=1.2 l (ΔJ =1 dipole gated).
1728.4 <i>3</i>	0.9 1	6831.1	13+	5102.6	12^{-}	D		DCO=1.1 l (Δ J=1 dipole gated);
1754.1 <i>1</i>	5.17	6822.6	13+	5068.5				
1760.7 5	1.4 4	6831.1	13+	5068.5				E_{γ} : poor fit. Level-energy difference=1762.6.
1971.3 9	0.5 1	5068.5		3097.1	10^{+}			
2209.5 1	7.1 3	5068.5		2858.9	9+			
2279.4 6	0.9 2	6822.6	13^{+}	4543.6	11^{+}			
2287.5 4	2.6 1	6831.1	13+	4543.6	11+			
2303.9 3	0.8 1	6822.6	13+	4518.6	12^{+}			
2313.1 4	0.8 1	6831.1	13+	4518.6	12+			
2379.6 <i>3</i>	1.4 <i>1</i>	6898.2	15^{-}	4518.6	12^{+}			

Continued on next page (footnotes at end of table)

82 Se(11 B,3n γ) 2002Ra13 (continued)

$\gamma(^{90}\text{Y})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
2428.4 7	1.2 1	5525.6	12 ⁽⁺⁾	3097.1	10^{+}
2444.3 7	1.1 3	5541.2	$12^{(+)}$	3097.1	10^{+}
2577.4 4	0.9 1	5674.3	$12^{(+)}$	3097.1	10^{+}
2968.3 9	1.0 1	6065.0	13-	3097.1	10^{+}

[†] From 2002Ra13, except where noted. [‡] Based on $\gamma\gamma(\theta)$ (DCO) measurements in 2002Ra13.

 ${}^{90}_{39}\mathrm{Y}_{51}$

4

 ${}^{90}_{39}\mathrm{Y}_{51}$

82 Se(11 B,3n γ) 2002Ra13

 ${}^{90}_{39}\mathrm{Y}_{51}$