⁹⁰Ru ε decay 2004De40

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020			

Parent: ⁹⁰Ru: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=11.7$ s 9; $Q(\varepsilon)=5841$ 4; $\%\varepsilon+\%\beta^+$ decay=100.0

2004De40: ⁹⁰Ru isotope produced in the ⁵⁸Ni(³⁶Ar¹⁰⁺, 2n2p) reaction with E=150 MeV. Nuclei recoiling out of the target were stopped and neutralised by 500 mbar of purified Ar gas inside a cell. Reaction products were ionized selectively, according to Z, using two dye lasers tuned to the resonant atomic transitions of the particular element. Laser-ionized nuclei were guided to the LISOL mass separator by a sextupole ion guide. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ (coin), I β , isotopic T_{1/2} with two HPGe detectors arranged in a compact configuration around β -sensitive plastic ΔE detectors.

1991Zh29, 1994Zh26: Enriched ⁵⁸Ni(³⁵Cl,2np) E(³⁵Cl)=112-132 MeV; Si(Li), Compton-suppressed HPGe and neutron detectors; Wheel transportation system; Measured $\sigma(E(^{58}Ni), E\gamma)$ and $\gamma(t)$; Identification of ⁹⁰Ru decay based on comparison of $\sigma(E(^{58}Ni))$ with cascade calculations; 37 γ -rays identified in coincidence with Tc K α x ray by 1994Zh26 but not placed in a decay scheme.

⁹⁰Tc Levels

 $\frac{\text{E(level)}^{\dagger}}{144.1} \frac{J^{\pi \ddagger}}{17} = \frac{T_{1/2}}{1^{+}} = \frac{T_{1/2}}{8.7 \text{ s } 2} = \frac{\text{Comments}}{\text{E(level)}, T_{1/2}: \text{ from the Adopted Levels.}}$ $\frac{1}{298.7} \frac{1}{17} = \frac{1$

[†] From $E\gamma$, except where noted.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ ‡	Ie‡	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(5204 4)	636.9	92	0.3 1	5.19 11	92	av E β =1987.4 20; ε K=0.03155 9; ε L=0.003825 11; ε M+=0.0008894 2
(5542 4)	298.7	41 5	1.2 1	4.67 7	42 5	av E β =2149.8 20; ε K=0.02544 7; ε L=0.003082 8; ε M+=0.0007167 1
(5697 4)	144.1	48 11	1.3 3	4.67 11	49 11	av E β =2224.2 20; ε K=0.02316 6; ε L=0.002806 7; ε M+=0.0006525 1 I(ε + β ⁺): isomer feeding was determined by 2004De20 from measurement of 511-keV annihilation intensity. 2004De20 do not provide value for I γ (511 γ).

[†] Values should be regarded as lower limits, as there is a large difference between the allowed energy for decay (5.8 MeV) and the highest observed excited level (0.6 MeV).

[‡] Absolute intensity per 100 decays.

$\gamma(^{90}\text{Tc})$

Iy normalization: from ΣIy (to 144-keV isomer)=51 *11*, based on 144-keV isomer I($\varepsilon + \beta^+$) feeding of 49 *11* from 2004De20 derived from a measurement of 511-keV annihilation intensity.

2004De40 confirm only two γ rays out of 37 γ rays reported by 1994Zh26.

$^{90}\mathbf{Ru}\,\varepsilon\,\mathbf{decay}$ 2004De40 (continued)

$\gamma(^{90}\text{Tc})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E _i (level)	E_f	\mathbf{J}_f^{π}	Comments
154.6 <i>1</i>	100	298.7	144.1	1+	E_{γ} : strong γ -ray identified in coincidence with Tc K α x ray but not placed in a decay scheme by 1994Zh26.
492.8 <i>1</i>	21 4	636.9	144.1	1+	E_{γ} : strong γ -ray identified in coincidence with Tc K α x ray but not placed in a decay scheme by 1994Zh26.

[†] From 2004De20.
[‡] For absolute intensity per 100 decays, multiply by 0.42 9.

$^{90}\mathbf{Ru}~\varepsilon$ decay 2004De40

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

⁹⁰₄₃Tc₄₇