Adopted Levels, Gammas

				Histo	ory						
	_	Туре		Author	Citation	Literature Cutoff Date					
	F	Full Evaluatio	on S. K.	. Basu, E. A. Mccutchan NDS 165, 1 (2020) 1-Mar-2020							
$Q(\beta^{-}) = -5841 \ 4$; $S(n) = 11401 \ 4$; $S(p) = 2999 \ 4$; $Q(\alpha) = -4016 \ 6 \ 2017Wa10$ $S(2n) = 25190 \ 150$; $S(2p) = 9130 \ 60$; $Q(\varepsilon p) = 2612 \ (syst) \ 24 \ (2017Wa10)$. α : Additional information 1.											
⁹⁰ Tc Levels											
Cross Reference (XREF) Flags											
	$\begin{array}{c} \mathbf{A} {}^{90}\mathrm{Ru} \ \varepsilon \ \mathrm{decay} \\ \mathbf{B} (\mathrm{HLxn}\gamma) \end{array}$										
				C Ni(⁴⁰ Ca,X))						
E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF		Comn	nents					
0	(8^{+})	49.2 s 4	BC	$T_{1/2}$: from 809.8 γ (t) (19	810x01). Other: 50.	7 s 63 (2012Ka12, based on analysis of					
				data in 2008We10). E(level): TOF spectra in and 11 % 5 for the gree high-spin levels are m assigned as the J^{π} =(8)	Ni(⁴⁰ Ca,X) reaction ound state and isome ore favorably produc ⁺) level.	give population fractions of 89 % 5 r, respectively (2012Ka12). As ed in these reactions, the ground state is					
				J^{π} : from systematics of J^{90} Nb(N=49) and J^{88} Nb (1993Ru03).	$J^{\pi} = 8^+$ states in neighbor $N = 47$) nuclei and s	aboring odd-odd ⁹² Tc(N=43), upported by shell-model calculations					
103.70 22	(6+)		В	J^{π} : shell-model calculation a 6 ⁺ isomeric level lie non-observation of a d	ons predict a $J^{\pi}=6^+$ es at 123 keV with T depopulating 104-keV	state at 106 keV (1993Ru03); in ⁹⁰ Nb $_{1/2} = 60 \ \mu$ s, which could explain the 7 transition.					
144.1 <i>17</i>	1+	8.7 s 2	A C	$\%\varepsilon + \%\beta^{+} = 100$ E(level): from Penning-trap mass measurement (2012Ka12): mass excess=-70724.7 keV <i>11</i> for ⁹⁰ Tc g.s. and -70580.6 keV <i>13</i> for ⁹⁰ Tc isomer (2012Ka12). T _{1/2} : from two component fit to 944.7 γ +948.1 γ (t) (1981Ox01). Other: 7.9 s 2 (1974Ia01). J ^{π} : theoretical prediction is 2 ⁺ but 1 ⁺ is suggested from log <i>ft</i> value to 0 ⁺ and 2 ⁺ states in ⁹⁰ Mo. If g.s. feeding is not properly determined then 2 ⁺ is possible							
152.52 ^{&} 20 298.7 1	(4 ⁻)		B A	J^{π} : 187.8 γ from (5 ⁻).							
340.33 ^{&} 18 494.09 ^a 8 636.9	(5 ⁻) (9 ⁺)		B B A	J^{π} : E2 683.5 γ from (7 ⁻) J^{π} : (M1+E2) 494.1 γ to (). (8 ⁺).						
993.72 ^{<i>a</i>} 8	(10^{+})	1.4 ps 5	В	J^{π} : E2 993.7 γ to (8 ⁺).							
1023.83 15	(7^{-})	~	В	J^{π} : E2 608.1 γ from (9 ⁻)). (10 ⁺)						
1485.90 ^a 10 1613.85 10	(11')	<5 ps	B B	J [*] : (M1+E2) 492.1 γ to ((10').						
1631.93 ^{&} 12	(9-)		В	J ^{π} : E2 363.3 γ from (11 ⁻	-).						
1698.77 <i>13</i>	(12^{+})	2.9 5	B	π_{1} E2 044 0 to (10 ⁺)							
1938.30°° 10 1995.00& 0	(12°) (11^{-})	2.8 ps 3 33 ns 4	в R	J : E2 944.9 γ to (10 ⁺). J ^{π} : D 1001 4γ to (10 ⁺).	(M1+F2) 191 6v fro	m (11 ⁻)					
2186.48 <i>11</i> 2247.95 <i>18</i>	(11^{-})	13 ps 2	B	J^{π} : E2 554.4 γ to (9 ⁻).	(1911 + 122) 191.07 IIO						
2537.40 ^{<i>a</i>} 11	(13 ⁺)	<0.7 ps	B	J ^π : 1051.5γ to (11 ⁺), D-	+Q 598.9 γ to (12 ⁺).						
2557.88 ^{&} 11	(12 ⁻)	<0.7 ps	В	J^{π} : (M1+E2) 562.8 γ to (11 ⁻).							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

90Tc Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	XREF	Comments
2600.48 11	(12 ⁻)	5.3 [@] ps 8	В	J^{π} : (D+Q) 605.2 γ to (11 ⁻); assignment to negative-parity sequence.
2775.61 ^{&} 10	(13^{-})	2.7 ps 3	В	J^{π} : E2 780.6 γ to (11 ⁻).
2946.74 12			В	
2982.00 12			В	
3167.77 ^a 11	(14^{+})	1.0 ps 3	В	J^{π} : E2 1229.0 γ to (12 ⁺).
3201.19 14			В	
3383.26 ^{<i>u</i>} 13	(15^{+})	1.8 ps 4	В	J^{n} : E2 845.8 γ to (13 ⁺).
3405.73 15			В	
3488.64 ^{x} 12	(14-)	<1.4 ps	В	J^{π} : (E2) 930.6 γ to (12 ⁻).
3593.08 13	(15^{+})	1.2 ps 4	В	J^{n} : E2 919.1 γ from (17 ⁺).
3672.91 <i>2</i>	(15 ⁻)	1.1 ps <i>3</i>	В	J^{π} : E2 897.4 γ to (13 ⁻).
4486.41 ^{<i>a</i>} 15	(16^{+})		В	J^{π} : 1103 γ to (15 ⁺); assignment to positive parity sequence.
4512.12 ^{<i>u</i>} 14	(17^{+})	1.5 ps <i>3</i>	В	J^{n} : E2 1128.8 γ to (15 ⁺).
4637.12 ^{&} 16	(17^{-})	1.6 ps 2	В	J^{π} : E2 964.2 γ to (15 ⁻).
4864.66 17	(17^{+})		В	J^{π} : 378.1 γ to (16 ⁺), 1481.9 γ to (15 ⁺).
5599.18 ^{<i>a</i>} 17	(18^+)		В	J^{π} : 1087.1 γ to (17 ⁺); assignment to positive parity sequence.
5651.25 ^{<i>a</i>} 17	(19+)	2.4 ps 1	В	J^{π} : E2 1139.1 γ to (17 ⁺).
5705.92 ^{x} 19	(19 ⁻)	1.3 ps 2	В	J^{π} : E2 1068.8 γ to (17 ⁻).
5808.21 21			В	
6338.54 24		Ø	В	
6455.27 ^{<i>a</i>} 21	(20^{+})	<0.7 ^{^w} ps	В	J^{π} : (D+Q) 803.9 γ to (19 ⁺); assignment to positive parity sequence.
6884.81 ^{<i>a</i>} 23	(21^{+})	0	В	J^{π} : (D+Q) 429.6 γ to (20 ⁺); assignment to positive parity sequence.
6993.93 ^{&} 21	(21^{-})	0.8 [@] ps 2	В	J^{π} : E2 1288.0 γ to (19 ⁻).
7373.4 3			В	
7439.6 ^{&} 4	(22 ⁻)		В	J ^{π} : 445.7 γ to (21 ⁻); assignment to negative parity sequence.
7678.8 <i>3</i>			В	
8394.4 ^{&} 4	(23^{-})		В	J^{π} : 954.8 γ to (22 ⁻); assignment to negative parity sequence.
8756.5 ^a 3	(22^{+})		В	J^{π} : 1872.2 γ to (21 ⁺), 2300.8 γ to (20 ⁺).
9342.1 <i>3</i>			В	
9804.2 <i>3</i>			В	
11246.4 4			В	

 † Deduced by evaluators from a least-squares fit to Ey, except where noted.

[‡] Spin and parity assignments for excited states are based on γ -ray multipolarities and on the assumption that γ -ray deexcitation takes place through yrast states. Spin and parities of the (8⁺) and (6⁺) levels are based on shell-model calculations which use a configuration space of only the 2p1/2 and 1g9/2 orbitals for protons and neutrons (1993Ru03).

[#] From recoil-distance Doppler-shift method in (HI,xn γ), except where noted. (1994Ru13).

[@] Effective half-life from (HI,xn γ), not corrected for feeding.

& Band(A): Negative-parity sequence.

^{*a*} Band(B): Positive-parity sequence.

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

$\gamma(^{90}\text{Tc})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
152.52	(4 ⁻)	48.8 1	100	103.70	(6^+)				E_{γ}, I_{γ} : from ⁹⁰ Ru ε decay.
298.7 340.33	(5 ⁻)	154.6 <i>1</i> 187.8 <i>1</i>	100 100 <i>12</i>	144.1	(4 ⁻)	(M1+E2)	0.23 +7-6	0.054 3	α (K)=0.0471 23; α (L)=0.0057 4; α (M)=0.00104 7; α (N)=0.000164 11; α (O)=1.05×10 ⁻⁵ 4 Mult.: D+Q from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in (HI,xn γ);
		236.8.3	10.6	103 70	(6^{+})				non-zero value of δ suggests M1+E2 character.
494.09	(9+)	494.1 <i>1</i>	100	0	(0 ⁻) (8 ⁺)	(M1+E2)	0.20 +6-5	0.00440	α(K)=0.00386 6; α(L)=0.000443 7; α(M)=8.02×10-5 13; α(N)=1.278×10-5 20; α(O)=8.59×10-7 13 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); non-zero value of δ suggests M1+E2 character.
636.9		492.8 1	100	144.1	1+				E_{γ} , I_{γ} : from ⁹⁰ Ru ε decay.
993.72	(10 ⁺)	499.7 <i>1</i>	5.5 3	494.09	(9 ⁺)	M1+E2	0.3 2	0.00432 12	α(K)=0.00379 10; α(L)=0.000436 14; α(M)=7.9×10-5 3; α(N)=1.26×10-5 4; α(O)=8.41×10-7 17 B(M1)(W.u.)=0.0060 +31-19; B(E2)(W.u.)=2.3 +40-18 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme.
		993.7 1	100 3	0	(8+)	E2		8.39×10 ⁻⁴	$\alpha(K)=0.000737 \ 11; \ \alpha(L)=8.44\times10^{-5} \ 12; \\ \alpha(M)=1.526\times10^{-5} \ 22; \ \alpha(N)=2.42\times10^{-6} \ 4 \\ \alpha(O)=1.604\times10^{-7} \ 23 \\ B(F2)(Wu)=16 \ +9-4$
1023.83	(7-)	683.5 <i>1</i>	100	340.33	(5 ⁻)	E2		0.00210	$\alpha(K)=0.00184 \ 3; \ \alpha(L)=0.000217 \ 3; \ \alpha(M)=3.92\times10^{-5} \ 6; \\ \alpha(N)=6.21\times10^{-6} \ 9; \ \alpha(O)=3.97\times10^{-7} \ 6$
1485.90	(11+)	492.1 <i>1</i>	100 4	993.72	(10 ⁺)	(M1+E2)	0.15 4	0.00443	$\alpha(K)=0.00389 \ 6; \ \alpha(L)=0.000446 \ 7; \ \alpha(M)=8.07\times10^{-5} \ 12; \ \alpha(N)=1.285\times10^{-5} \ 19; \ \alpha(O)=8.66\times10^{-7} \ 13$ B(M1)(W.u.)>0.031; B(E2)(W.u.)>1.7 Mult.: D+Q from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in (HI,xn γ); non-zero value of δ suggests M1+E2 character.
		991.5 2	10.1 22	494.09	(9 ⁺)	[E2]			B(E2)(W.u.)>0.35
1613.85		620.2 <i>4</i>	21 6 100 6	993.72	(10^+)				
1631.93	(9 ⁻)	608.1 <i>1</i>	100 0	1023.83	(7^{-})	E2		0.00288	$\alpha(K)=0.00252 \ 4; \ \alpha(L)=0.000300 \ 5; \ \alpha(M)=5.43\times10^{-5} \ 8; \ \alpha(N)=8.57\times10^{-6} \ 12; \ \alpha(\Omega)=5.41\times10^{-7} \ 8$
		1137.8 <i>3</i>	45 11	494.09	(9 ⁺)				
1698.77 1938.56	(12+)	1204.4 <i>4</i> 452.6 <i>1</i>	100 5.8 4	494.09 1485.90	(9 ⁺) (11 ⁺)	M1+E2		0.0061 7	α(K)=0.0053 6; α(L)=0.00063 10; α(M)=0.000115 17; α(N)=1.8×10-5 3; α(O)=1.15×10-6 10 B(M1)(W.u.)<0.0062; B(E2)(W.u.)<32 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme.
		944.9 <i>1</i>	100 3	993.72	(10+)	E2		9.42×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000827 \ 12; \ \alpha(\mathrm{L}) = 9.50 \times 10^{-5} \ 14; \\ &\alpha(\mathrm{M}) = 1.719 \times 10^{-5} \ 24; \ \alpha(\mathrm{N}) = 2.73 \times 10^{-6} \ 4; \end{aligned}$

ω

Adopted Levels, Gammas (continued)									
							$\gamma(^{90}\text{Tc})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
1995.09	(11 ⁻)	296.3 1	1.7 7	1698.77	<u> </u>				α (O)=1.80×10 ⁻⁷ 3 B(E2)(W.u.)=10.6 +23-16
		363.3 1	6.1 14	1631.93	(9 ⁻)	[E2]		0.01355	$\begin{aligned} &\alpha(\mathrm{K}) {=} 0.01174 \ 17; \ \alpha(\mathrm{L}) {=} 0.001491 \ 21; \ \alpha(\mathrm{M}) {=} 0.000271 \ 4; \\ &\alpha(\mathrm{N}) {=} 4.23 {\times} 10^{-5} \ 6; \ \alpha(\mathrm{O}) {=} 2.45 {\times} 10^{-6} \ 4 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) {=} 5.1 \ {+} 14 {-} 12 \end{aligned}$
		381.3 <i>I</i> 509.1 <i>I</i>	5.0 <i>10</i> 22.9 2 <i>1</i>	1613.85 1485.90	(11+)	(E1)		1.51×10 ⁻³	α(K)=0.001330 19; α(L)=0.0001500 21; α(M)=2.71×10-5 4; α(N)=4.30×10-6 6; α(O)=2.85×10-7 4 B(E1)(W.u.)=1.30×10-5 +21-18 Mult.: D from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=yes from level scheme.
		1001.4 <i>1</i>	100 <i>3</i>	993.72	(10 ⁺)	(E1)		3.53×10 ⁻⁴	$ \alpha(K)=0.000311 5; \alpha(L)=3.46\times10^{-5} 5; \alpha(M)=6.25\times10^{-6} 9; \alpha(N)=9.95\times10^{-7} 14; \alpha(O)=6.73\times10^{-8} 10 $ B(E1)(W.u.)=7.5×10 ⁻⁶ +10-8 Mult.: D from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=yes from level scheme.
2186.48	(11 ⁻)	191.6 <i>1</i>	100 6	1995.09	(11 ⁻)	(M1+E2)	0.20 +30-10	0.050 12	$ α(K)=0.044 \ 10; \ α(L)=0.0053 \ 17; \ α(M)=9.6×10^{-4} \ 31; α(N)=1.52×10^{-4} \ 46; \ α(O)=9.8×10^{-6} \ 18 B(M1)(W.u.)=0.124 \ +20-27 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme. $
		554.4 1	67.3 20	1631.93	(9 ⁻)	E2		0.00373	α (K)=0.00326 5; α (L)=0.000392 6; α (M)=7.10×10 ⁻⁵ 10; α (N)=1.119×10 ⁻⁵ 16; α (O)=6.98×10 ⁻⁷ 10 B(E2)(W.u.)=12.5 +24-18
2247 95		1192.8 5 309 5 2	14 6 100	993.72 1938 56	(10^+) (12^+)	[E1]			$B(E1)(W.u.)=1.1\times10^{-6} 5$
2537.40	(13+)	598.9 1	100 3	1938.56	(12 ⁺)	(M1+E2)	0.07 +10-8	0.00278	α(K)=0.00244 4; α(L)=0.000278 4; α(M)=5.03×10-5 8; α(N)=8.01×10-6 12; α(O)=5.43×10-7 8 B(M1)(W.u.)>0.12 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme.
0557 00	(12-)	1051.5 1	15.9 11	1485.90	(11^+)	[E2]			B(E2)(W.u.)>3.3
2331.88	(12)	562.8 <i>1</i>	6.1 / 100 <i>3</i>	2180.48 1995.09	(11 ⁻)	(M1+E2)	0.08 3	0.00321	α(K)=0.00282 4; α(L)=0.000322 5; α(M)=5.82×10-5 9; α(N)=9.28×10-6 13; α(O)=6.28×10-7 9 B(M1)(W.u.)>0.16; B(E2)(W.u.)>1.4 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); non-zero value of δ suggests M1+E2 character.
2600.48	(12 ⁻)	413.9 <i>1</i> 605 2 <i>1</i>	60 <i>5</i> 100 5	2186.48 1995 09	(11^{-}) (11^{-})	D+Q D+O			
2775.61	(13 ⁻)	175.0 1	17.4 19	2600.48	(12^{-})	(M1+E2)		0.114 54	$\alpha(K)=0.097$ 45; $\alpha(L)=0.0138$ 76; $\alpha(M)=0.0025$ 14;

4

	Adopted Levels, Gammas (continued)									
							$\gamma(^{90}\text{Tc})$	(continued)		
level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments	
75.61	(13 ⁻)	217.7 1	100 4	2557.88	(12 ⁻)	(M1+E2)	0.06 3	0.0341 6		
		589.3 <i>1</i>	7.4 12	2186.48	(11 ⁻)	[E2]			Mult.: D+Q from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in (HI,xn γ); $\Delta\pi$ =no from level scheme. B(E2)(W.u.)=5.0 10	
		780.6 1	39.9 16	1995.09	(11 ⁻)	E2		1.49×10 ⁻³	α (K)=0.001310 <i>19</i> ; α (L)=0.0001525 <i>22</i> ; α (M)=2.76×10 ⁻⁵ <i>4</i> ; α (N)=4.37×10 ⁻⁶ <i>7</i> ; α (O)=2.84×10 ⁻⁷ <i>4</i> B(E2)(W.u.)=6.5 +9-7	
		837.1 <i>1</i>	15.9 8	1938.56	(12 ⁺)	[E1]		5.03×10 ⁻⁴	α (K)=0.000443 7; α (L)=4.95×10 ⁻⁵ 7; α (M)=8.93×10 ⁻⁶ 13; α (N)=1.421×10 ⁻⁶ 20; α (O)=9.56×10 ⁻⁸ 14 B(E1)(W.u.)=1.82×10 ⁻⁵ +24-21	
46.74		409.4 <i>1</i> 698.9 <i>2</i> 1008.5 <i>2</i>	74 5 37 11 100 21	2537.40 2247.95 1938.56	(13 ⁺) (12 ⁺)					
82.00		381.3 <i>1</i> 424.2 <i>1</i>	25 <i>5</i> 100 <i>9</i>	2600.48 2557.88	(12^{-}) (12^{-})					
57.77	(14 ⁺)	221.2 <i>I</i>	9.4 7	2946.74		(M1+E2)		0.053 21	α(K)=0.045 17; α(L)=0.0061 28; α(M)=0.00110 50; α(N)=1.71×10-4 75; α(O)=9.4×10-6 30 B(M1)(W.u.)<0.26 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme.	
		630.4 <i>1</i>	9 1	2537.40	(13 ⁺)	(M1+E2)		0.00254 9	α(K)=0.00222 7; α(L)=0.000258 13; α(M)=4.68×10-5 24; α(N)=7.4×10-6 4; α(O)=4.87×10-7 9 B(M1)(W.u.)<0.011; B(E2)(W.u.)<29 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme	
		1229.0 <i>1</i>	100 4	1938.56	(12 ⁺)	E2		5.38×10 ⁻⁴	$\alpha(K)=0.000462 \ 7; \ \alpha(L)=5.24\times10^{-5} \ 8; \ \alpha(M)=9.46\times10^{-6} \ 14; \\ \alpha(N)=1.506\times10^{-6} \ 21; \ \alpha(O)=1.009\times10^{-7} \ 15 \\ B(E2)(W.u.)=7.1 \ +30-17$	
01.19	(15^{\pm})	600.9 2	100	2600.48	(12^{-})		-0.07	0.0240		
83.26	(15 ⁺)	215.5 <i>I</i> 845.8 <i>I</i>	100 <i>4</i> 47.8 20	2537.40	(14 ⁺) (13 ⁺)	(M1+E2) E2	≤0.06	0.0349 1.23×10 ⁻³	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0306 \ 5; \ \alpha(\mathbf{L}) = 0.00359 \ 6; \ \alpha(\mathbf{M}) = 0.000651 \ 10; \\ \alpha(\mathbf{N}) &= 0.0001036 \ 15; \ \alpha(\mathbf{O}) = 6.88 \times 10^{-6} \ 10 \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) &= 0.81 \ + 26 - 17; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) < 88 \\ \mathbf{M}ult.: \ \mathbf{D} + \mathbf{Q} \ from \ \gamma(\theta) \ and \ \gamma\gamma(\theta) \ in \ (\mathbf{H}I,\mathbf{xn\gamma}); \ \Delta\pi = \mathbf{no} \\ from \ level \ scheme. \\ \alpha(\mathbf{K}) &= 0.001075 \ 15; \ \alpha(\mathbf{L}) = 0.0001245 \ 18; \ \alpha(\mathbf{M}) = 2.25 \times 10^{-5} \\ 4; \ \alpha(\mathbf{N}) = 3.57 \times 10^{-6} \ 5; \ \alpha(\mathbf{O}) = 2.33 \times 10^{-7} \ 4 \end{aligned}$	
	level) 75.61 46.74 32.00 57.77	$\frac{\text{level}}{75.61} \qquad \frac{J_i^{\pi}}{(13^-)}$ $\frac{16.74}{32.00}$ $\frac{57.77}{(14^+)}$ $\frac{11.19}{33.26} \qquad (15^+)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	level) J_i^{π} E_{γ}^{\dagger} I_{γ}^{\dagger} E_f 75.61 (13^-) $217.7 \ I$ $100 \ 4$ 2557.88 75.61 (13^-) $217.7 \ I$ $100 \ 4$ 2557.88 780.6 \ I $39.9 \ I6$ 1995.09 837.1 \ I $15.9 \ 8$ 1938.56 86.74 $409.4 \ I$ $74 \ 5$ 2537.40 689.9 \ 2 $37 \ II$ 2247.95 $1008.5 \ 2$ $100 \ 2I$ 1938.56 32.00 $381.3 \ I$ $25 \ 5$ 2600.48 $424.2 \ I$ $100 \ 9$ 2557.88 57.77 (14^+) $221.2 \ I$ $9.4 \ 7$ 2946.74 $630.4 \ I$ $9 \ I$ 2537.40 $1229.0 \ I$ $100 \ 4$ 1938.56 91.19 $600.9 \ 2$ $100 \ 4$ 1938.56 $1229.0 \ I$ $100 \ 4$ 1938.56 91.19 $600.9 \ 2$ $100 \ 4$ 3167.77 $845.8 \ I$ $47.8 \ 20$ 2537.40	level) J_i^{π} E_y^{\dagger} I_y^{\dagger} E_f J_f^{π} 75.61 (13 ⁻) 217.7 I 100 4 2557.88 (12 ⁻) 589.3 I 7.4 I2 2186.48 (11 ⁻) 780.6 I 39.9 I6 1995.09 (11 ⁻) 837.1 I 15.9 8 1938.56 (12 ⁺) 837.1 I 15.9 8 1938.56 (12 ⁺) 837.1 I 15.9 8 1938.56 (12 ⁺) 837.1 I 02 5 2537.40 (13 ⁺) 837.1 I 02 5 260.48 (12 ⁻) 837.1 I 02 5 260.48 (12 ⁻) 82.00 381.3 I 25 5 2600.48 (12 ⁻) 381.3 I 25 5 260.48 (12 ⁻) 57.77 (14 ⁺) 221.2 I 9.4 7 2946.74 630.4 I 9 I 2537.40 (13 ⁺) 1229.0 I 100 4 1938.56 (12 ⁺) 83.26 (15 ⁺) 215.5 I 100 4 3167.77 (14 ⁺) 845.8 I 47.8 20 2537.40 (13 ⁺) <t< td=""><td>level) J_I^{π} E_{γ}^{\dagger} L_{γ}^{\dagger} E_f J_I^{π} Mult.[‡] 75.61 (13⁻) 217.7 1 100 4 2557.88 (12⁻) (M1+E2) 589.3 1 7.4 12 2186.48 (11⁻) [E2] 780.6 1 39.9 16 1995.09 (11⁻) E2 837.1 1 15.9 8 1938.56 (12⁺) [E1] 46.74 409.4 1 74 5 2537.40 (13⁺) 698.9 2 37 11 2247.95 [1008.5 2 100 21 1938.56 (12⁺) 82.00 381.3 1 25 5 2600.48 (12⁻) (M1+E2) 57.77 (14⁺) 221.2 1 9.4 7 2946.74 (M1+E2) 630.4 1 9 1 2537.40 (13⁺) (M1+E2) 91.19 (15⁺) 600.9 2 100 2600.48 (12⁻) 845.8 1 47.8 20 2537.40 (13⁺) (M1+E2) 845.8 1 47.8 20 2537.40 (13⁺) E2</td><td>$\frac{\chi^{(0)T_{C})}}{1} \frac{J_{I}^{\pi}}{I_{I}} = \frac{E_{y}^{\dagger}}{I_{y}} \frac{I_{y}^{\dagger}}{I_{y}} = \frac{E_{f}}{I_{f}} \frac{J_{f}^{\pi}}{I_{I}} \frac{Mult.^{\ddagger}}{Mult.^{\ddagger}} \frac{\delta^{\ddagger}}{\delta^{\ddagger}}$ $\frac{75.61}{780.61} (13^{-}) 217.71 100.4 2557.88 (12^{-}) (M1+E2) 0.06.3$ $\frac{589.31}{780.61} \frac{7.412}{39.916} \frac{2186.48}{1995.09} (11^{-}) = E2$ $837.11 15.9.8 1938.56 (12^{+}) = E1$ $837.11 15.9.8 1938.56 (12^{+}) = E1$ $837.11 15.9.8 1938.56 (12^{+}) = E1$ $82.00 381.31 25.5 2600.48 (12^{-}) = 424.21 100.9 2557.88 (12^{-}) = 5537.40 (13^{+}) = 630.41 9.1 2537.40 (13^{+}) = (M1+E2)$ $630.41 9.1 2537.40 (13^{+}) (M1+E2) = 630.41 9.1 2537.40 (13^{+}) = E2$ $1229.01 100.4 1938.56 (12^{+}) = E2$ $91.19 600.92 100 2600.48 (12^{-}) = E2$ $845.81 47.820 2537.40 (13^{+}) = E2$</td><td>$\frac{\chi^{(0)}\text{Tc} \text{ (continued)}}{Mult.^{\frac{3}{2}}} = \frac{J_{7}^{\frac{3}{2}}}{L_{7}} = \frac{I_{7}^{\frac{3}{2}}}{Mult.^{\frac{3}{2}}} = \frac{\delta^{\frac{3}{2}}}{Mult.^{\frac{3}{2}}} = \frac{\delta^{\frac{3}{2}}}{\alpha}$ $\frac{2557.88}{780.61} = \frac{1}{39.916} = \frac{1}{1004} = \frac{1}{2557.88} = \frac{1}{1004} = \frac{1}{104} = \frac{1}{104} = \frac{1}{104} = \frac{1}$</td></t<>	level) J_I^{π} E_{γ}^{\dagger} L_{γ}^{\dagger} E_f J_I^{π} Mult. [‡] 75.61 (13 ⁻) 217.7 1 100 4 2557.88 (12 ⁻) (M1+E2) 589.3 1 7.4 12 2186.48 (11 ⁻) [E2] 780.6 1 39.9 16 1995.09 (11 ⁻) E2 837.1 1 15.9 8 1938.56 (12 ⁺) [E1] 46.74 409.4 1 74 5 2537.40 (13 ⁺) 698.9 2 37 11 2247.95 [1008.5 2 100 21 1938.56 (12 ⁺) 82.00 381.3 1 25 5 2600.48 (12 ⁻) (M1+E2) 57.77 (14 ⁺) 221.2 1 9.4 7 2946.74 (M1+E2) 630.4 1 9 1 2537.40 (13 ⁺) (M1+E2) 91.19 (15 ⁺) 600.9 2 100 2600.48 (12 ⁻) 845.8 1 47.8 20 2537.40 (13 ⁺) (M1+E2) 845.8 1 47.8 20 2537.40 (13 ⁺) E2	$\frac{\chi^{(0)T_{C})}}{1} \frac{J_{I}^{\pi}}{I_{I}} = \frac{E_{y}^{\dagger}}{I_{y}} \frac{I_{y}^{\dagger}}{I_{y}} = \frac{E_{f}}{I_{f}} \frac{J_{f}^{\pi}}{I_{I}} \frac{Mult.^{\ddagger}}{Mult.^{\ddagger}} \frac{\delta^{\ddagger}}{\delta^{\ddagger}}$ $\frac{75.61}{780.61} (13^{-}) 217.71 100.4 2557.88 (12^{-}) (M1+E2) 0.06.3$ $\frac{589.31}{780.61} \frac{7.412}{39.916} \frac{2186.48}{1995.09} (11^{-}) = E2$ $837.11 15.9.8 1938.56 (12^{+}) = E1$ $837.11 15.9.8 1938.56 (12^{+}) = E1$ $837.11 15.9.8 1938.56 (12^{+}) = E1$ $82.00 381.31 25.5 2600.48 (12^{-}) = 424.21 100.9 2557.88 (12^{-}) = 5537.40 (13^{+}) = 630.41 9.1 2537.40 (13^{+}) = (M1+E2)$ $630.41 9.1 2537.40 (13^{+}) (M1+E2) = 630.41 9.1 2537.40 (13^{+}) = E2$ $1229.01 100.4 1938.56 (12^{+}) = E2$ $91.19 600.92 100 2600.48 (12^{-}) = E2$ $845.81 47.820 2537.40 (13^{+}) = E2$	$\frac{\chi^{(0)}\text{Tc} \text{ (continued)}}{Mult.^{\frac{3}{2}}} = \frac{J_{7}^{\frac{3}{2}}}{L_{7}} = \frac{I_{7}^{\frac{3}{2}}}{Mult.^{\frac{3}{2}}} = \frac{\delta^{\frac{3}{2}}}{Mult.^{\frac{3}{2}}} = \frac{\delta^{\frac{3}{2}}}{\alpha}$ $\frac{2557.88}{780.61} = \frac{1}{39.916} = \frac{1}{1004} = \frac{1}{2557.88} = \frac{1}{1004} = \frac{1}{104} = \frac{1}{104} = \frac{1}{104} = \frac{1}$	

S

 $^{90}_{43}{
m Tc}_{47}{
m -5}$

L

Adopted Levels, Gammas (continued)

$\gamma(^{90}$ Tc) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
3405.73		238.1 2	26 11	$3167.77 (14^+)$				
3488 64	(14^{-})	868.4 2 287 5 1	21 8 23	$2537.40(13^{\circ})$ 3201 19				
5100.01	(11)	506.5 1	49 6	2982.00				
		713.1 1	100 3	2775.61 (13 ⁻)	(M1+E2)	0.14 +9-6	0.00186	α(K)=0.001633 23; α(L)=0.000185 3; α(M)=3.35×10-5 5; α(N)=5.34×10-6 8; α(O)=3.63×10-7 5 B(M1)(W.u.)>0.019; B(E2)(W.u.)>0.27 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme.
		930.6 2	33.3 23	2557.88 (12 ⁻)	(E2)		9.76×10 ⁻⁴	α (K)=0.000857 <i>12</i> ; α (L)=9.86×10 ⁻⁵ <i>14</i> ; α (M)=1.783×10 ⁻⁵ 25; α (N)=2.83×10 ⁻⁶ <i>4</i> ; α (O)=1.86×10 ⁻⁷ <i>3</i> B(E2)(W.u.)>3.5
3593.08	(15^{+})	187.4 <i>1</i>	41 4	3405.73				
		210.1 4	11 5	3383.26 (15 ⁺)				
		425.3 1	100 4	3167.77 (14 ⁺)	(M1+E2)			B(M1)(W.u.)<0.25 Mult.: D+Q from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in (HI,xn γ); $\Delta\pi$ =no from level scheme.
3672.91	(15 ⁻)	184.2 <i>1</i>	43.5 17	3488.64 (14 ⁻)	(M1+E2)		0.096 44	α(K)=0.082 36; α(L)=0.0115 61; α(M)=0.0021 12; α(N)=3.2×10-4 17; α(O)=1.67×10-5 64 B(M1)(W.u.)<1.4 Mult.: D+Q from γ(θ) and γγ(θ) in (HI,xnγ); Δπ=no from level scheme.
		505.0 2	5.0 10	3167.77 (14+)	[E1]			$B(E1)(W.u.) = 7.8 \times 10^{-5} + 34 - 22$
		897.4 <i>1</i>	100 4	2775.61 (13 ⁻)	E2		1.06×10^{-3}	α (K)=0.000933 <i>13</i> ; α (L)=0.0001076 <i>15</i> ; α (M)=1.95×10 ⁻⁵ <i>3</i> ; α (N)=3.09×10 ⁻⁶ <i>5</i> ; α (O)=2.03×10 ⁻⁷ <i>3</i> B(E2)(W.u.)=24 +9-5
4486.41	(16^{+})	1103.0 <i>1</i>	100	3383.26 (15 ⁺)			2	
4512.12	(17 ⁺)	919.1 <i>1</i>	32.1 13	3593.08 (15 ⁺)	E2		1.01×10^{-3}	$\alpha(K)=0.000882 \ 13; \ \alpha(L)=0.0001016 \ 15; \ \alpha(M)=1.84\times10^{-5} \\ 3; \ \alpha(N)=2.92\times10^{-6} \ 4; \ \alpha(O)=1.92\times10^{-7} \ 3 \\ B(E2)(W.u.)=5.8 \ +15-10$
		1128.8 <i>1</i>	100 3	3383.26 (15 ⁺)	E2		6.33×10 ⁻⁴	$\alpha(\mathbf{K})=0.000555 \ 8; \ \alpha(\mathbf{L})=6.31\times10^{-5} \ 9; \ \alpha(\mathbf{M})=1.141\times10^{-5}$ $I6; \ \alpha(\mathbf{N})=1.81\times10^{-6} \ 3; \ \alpha(\mathbf{O})=1.209\times10^{-7} \ 17$ $\mathbf{R}(\mathbf{E})(\mathbf{W} \mathbf{u})=65\pm17-11$
4637.12	(17 ⁻)	964.2 1	100	3672.91 (15 ⁻)	E2		8.99×10 ⁻⁴	$\alpha(K) = 0.00789 \ 11; \ \alpha(L) = 9.06 \times 10^{-5} \ 13; \ \alpha(M) = 1.639 \times 10^{-5} \ 23; \ \alpha(N) = 2.60 \times 10^{-6} \ 4 \ \alpha(O) = 1.718 \times 10^{-7} \ 24 \ B(E2)(W.u.) = 17.7 + 26 - 20$
4864.66	(17^{+})	378.1 <i>1</i>	43 9	4486.41 (16 ⁺)				
	(ret:	1481.9 2	100 9	3383.26 (15 ⁺)				
5599.18	(18^{+})	1087.1 <i>1</i>	100	4512.12 (17 ⁺)				
5651.25	(19+)	1139.1 <i>1</i>	100	4512.12 (17 ⁺)	E2		6.21×10 ⁻⁴	$\alpha(K)=0.000544 \ 8; \ \alpha(L)=6.18\times10^{-5} \ 9; \ \alpha(M)=1.118\times10^{-5}$ 16; $\alpha(N)=1.778\times10^{-6} \ 25$

6

Adopted Levels, Gammas (continued)										
	γ ⁽⁹⁰ Tc) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α	Comments			
5705.92	(19 ⁻)	1068.8 <i>1</i>	100	4637.12 (17 ⁻)	E2	7.12×10 ⁻⁴	$\begin{aligned} &\alpha(\text{O})=1.186\times10^{-7} \ 17\\ \text{B(E2)(W.u.)}=5.13 \ 21\\ &\alpha(\text{K})=0.000625 \ 9; \ \alpha(\text{L})=7.13\times10^{-5} \ 10; \ \alpha(\text{M})=1.290\times10^{-5} \ 18; \ \alpha(\text{N})=2.05\times10^{-6}\\ &\beta; \ \alpha(\text{O})=1.363\times10^{-7} \ 19\\ \text{B(E2)(W.u.)}=13.0 \ +24-17 \end{aligned}$			
5808.21		209.2 2	100	5599.18 (18 ⁺)						
6338.54		1473.8 2	100	4864.66 (17 ⁺)						
6455.27	(20^{+})	647.1 <i>1</i>	12.3 14	5808.21						
		803.9 2	100 4	5651.25 (19 ⁺)	(D+Q)					
6884.81	(21^{+})	429.6 1	100	6455.27 (20 ⁺)	(D+Q)					
6993.93	(21 ⁻)	1288.0 <i>I</i>	100	5705.92 (19 ⁻)	E2	5.00×10 ⁻⁴	α (K)=0.000419 6; α (L)=4.73×10 ⁻⁵ 7; α (M)=8.56×10 ⁻⁶ 12; α (N)=1.362×10 ⁻⁶ 19; α (O)=9.14×10 ⁻⁸ 13 B(E2)(W,u)=8.3 +28-17			
7373.4		1722.2 5	100	5651.25 (19 ⁺)						
7439.6	(22^{-})	445.7 3	100	6993.93 (21-)						
7678.8		305.4 2	53 <i>13</i>	7373.4						
		1340.2 2	100 7	6338.54						
8394.4	(23^{-})	954.8 2	100	7439.6 (22 ⁻)						
8756.5	(22^{+})	1077.8 5	42 17	7678.8						
		1872.2 <i>3</i>	100 25	6884.81 (21 ⁺)						
		2300.8 <i>3</i>	83 17	6455.27 (20 ⁺)						
9342.1		585.7 2	100 12	8756.5 (22 ⁺)	(D+Q)					
		1663.0 4	30 6	7678.8						
9804.2		462.1 <i>1</i>	100	9342.1	(D+Q)					
11246.4		1442.2 2	100	9804.2	(E2)					

[†] From (HI,xn γ), except where noted. [‡] From $\gamma(\theta)$ in ⁵⁸Ni(³⁵Cl,2pn γ) and DCO ratios in ⁵⁸Ni(³⁶Ar,3pn γ), both from (HI,xn γ) dataset.

-

Adopted Levels, Gammas

⁹⁰₄₃Tc₄₇

9

 $^{90}_{43}{
m Tc}_{47}$ -9

Adopted Levels, Gammas

From ENSDF

⁹⁰₄₃Tc₄₇

Adopted Levels, Gammas

Band(B): Positive-parity sequence

Band(A): Nega	ntive-parity sequence	(22+)	8756.5
(23-)	8394 4		
()	0374.4		
955		1	872
			2301
(22-)	7439.6		2501
446			
(21 ⁻)	6993.93	(21 ⁺)	(004.01
		(21)	0004.01
		(20 ⁺)	30
1	1288	(20)	• • • • • • • • • • • • • • • • • • • •
		8	04
(19 ⁻)	5705.92	(19 ⁺)	5651.25
		(18 ⁺)	5599.18
1	1069		1120
		1	087
(17-)	4637.12	(17+)	
		(17^+) (16 ⁺)	4512.12
			(100012
	964		
		1	1129 103
(15-)	3672.91		
(14 ⁻) 184	3488.64	(15 ⁺)	3383.26
	807	(14^+) 2	16 3167 77
713	931		
(13-)	2775.61	6	846 30
(12 ⁻) 218	2557.88	(13+)	2537.40
	781	1229	
563		5	99
(11 ⁻)	1995.09	(12+)	1052 1938.56
(0-)	363		
(9)	1631.93	(11 ⁺) 4	1485.90
	608	945	1100170
(7 ⁻)	1022.02	4	92
(7)	1023.83	(10')	992 <u>993.72</u>
	684	5	00
	004	(9+)	494.09
$\frac{(5^{-})}{(4^{-})}$	340.33		·
(4^{-}) 188	152.52		

⁹⁰₄₃Tc₄₇

11