90 Rb β^- decay (158 s) 1981Ta05

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020						

Parent: ⁹⁰Rb: E=0; $J^{\pi}=0^{-}$; $T_{1/2}=158 \text{ s} 5$; $Q(\beta^{-})=6584 7$; $\%\beta^{-}$ decay=100.0

1981Ta05: From ²³⁵U(n,F). Mass separation of ⁹⁰Kr. NaI and Ge(Li). Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$. The 158-s and 258-s ⁹⁰Rb activities were distinguished by varying collection and observation times.

1977Hu03: From ²³⁵U(n,F). Mass separation. Measured $T_{1/2}$, $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, $E\beta$.

1997Gr09: from 252 Cf. On-line mass separation and measurement of γ rays using a total absorption γ -ray spectrometer to

determine β^- distributions of decay intensities of fission products. Detector consisted of a large NaI scintillator with a deep axial well for the radioactive source and a Si(Li) detector to measure $\beta\gamma$ coincidences.

Others: 1964Jo02, 1967Zh01, 1972Eh02, 1973Si12, 1973Cl02, 1974Gr29, 1976Wo05, 1978St02, 1978Wu04, 1978Wo15, 1980De02. All data are from 1981Ta05, except as noted.

 α : Additional information 1.

⁹⁰Sr Levels

For results of $\gamma\gamma$ correlations see ⁹⁰Rb β^- decay (258 s).

E(level)	$J^{\pi^{\dagger}}$	T _{1/2} ‡	E(level)	J^{π}	E(level)	J^{π}
0 831.68 4 1655.92 8 1892.36 5 2207.04 5 2497.31 7 2570.62 9 2674.0? 5 2927.71 9 2971.14 <i>12</i> 3032.87 8	$ \frac{1}{0^{+}} \frac{1}{2^{+}} \frac{1}{4^{+}} \frac{1}{2^{+}} \frac{1}{(3^{-})} \frac{1}{(2^{+})} \frac{1}{(2^{+})} \frac{1}{4^{-}} \frac{1}{0^{+}} \frac{1}{2^{+}} \frac{1}{2^{+$	$ \frac{1}{2} $ $ \frac{1}{2} $ $ \frac{28.81^{\dagger} \text{ y } 3}{7 \text{ ps } 2} $ $ \frac{12 \text{ ps } 2}{2 \text{ ps } 1} $ $ \frac{\leq 1 \text{ ps}}{10 \text{ ps } 7} $ $ \frac{\leq 1 \text{ ps}}{10 \text{ ps } 7} $	E(level) 3144.9 4 3383.41 8 3555.84 15 3627.0 4 3954.33 19 4019.4 4 4037.12 10 4135.63 10 4137.6 9 4148.86 8 4366.05 12	(1,2 ⁺)	4646.35 15 4790.3? 5 4919.06? 20 4973.99 18 5041.01 13 5187.52 7 5254.32 12 5333.15? 24 5426.66 14 5600.3? 5 5623.3 3	(1 ⁻ ,2 ⁺)
3039.26 8	1		4580.8 <i>3</i>			

[†] From the Adopted Levels.

[‡] From $\beta\gamma$ (t) (1991Ma05), except where noted.

β^{-} radiations

 β^- branches are from I(γ +ce) imbalance at each level. Values from 1997Gr09 (total absorption γ -ray spectrometer) for excited levels are in reasonable agreement with those deduced from transition- intensity balances. However, that from transition-intensity balance to the 831-keV level is about a factor of two (on a relative scale) larger than values obtain by 1997Gr09 for other excited levels. In addition, these authors found no β^- population to levels above 5300 keV. These results disagree with the γ -rays measured by 1981Ta05 and placed on the decay scheme de-exciting levels up to 5623 keV. 1997Gr09 placed fictitious levels at about 2700, 2800, 2900, 3000, 3100, 3200, 3650, 3850, and 4950 keV to interpret their data.

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(961 7)	5623.3	0.45 11	5.72 11	av Eβ=339.2 30
(984 7)	5600.3?	0.073 17	6.54 11	av $E\beta = 348.8 \ 30$
(1157 7)	5426.66	3.93 25	5.08 4	av E β =422.5 31
(1251 [‡] 7)	5333.15?	0.47 4	6.13 4	av Eβ=463.0 <i>31</i>

$^{90} {\rm Rb}\,\beta^-$ decay (158 s) 1981Ta05 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(1330 7)	5254.32	1.28 8	5.80 4	av E β =497.4 31
(/				$I\beta^{-}$: 1.39% (1997Gr09).
(1396 7)	5187.52	4.29 25	5.36 <i>3</i>	av $E\beta = 526.9 \ 31$
				$I\beta^{-1}$; 5.56% (1997Gr09).
(1543 7)	5041.01	0.49 4	6.47 <i>4</i>	av $E\beta = 592.1 \ 32$
				$I\beta^{-}$: 0.58% (1997Gr09).
(1610 7)	4973.99	0.61 8	6.45 6	av $E\beta = 622.2 \ 32$
				$I\beta^{-1}$: 0.86% (1997Gr09).
(1665 7)	4919.06?	0.33 <i>3</i>	6.77 5	av $E\beta = 646.9 32$
(1794 7)	4790.3?	0.14 3	7.28 10	av $E\beta = 705.4 \ 32$
(1938 7)	4646.35	2.84 18	6.11 4	av $E\beta = 771.2 \ 33$
				Iβ ⁻ : 2.32% (1997Gr09).
(2003 7)	4580.8	0.32 5	7.11 7	av $E\beta = 801.4 \ 33$
				$I\beta^{-}: 0.36\% (1997Gr09).$
(2218 7)	4366.05	8.8 6	5.86 4	av E β =900.8 33
				$I\beta^{-}$: 11.20% (1997Gr09).
(2435 7)	4148.86	< 0.03	>8.5	av E β =1002.1 33
(2446 7)	4137.6	< 0.1	>8.0	av $E\beta = 1007.4 \ 33$
(2448 7)	4135.63	7.7 5	6.09 4	av $E\beta = 1008.3 \ 33$
				$I\beta^{-}$: 10.84% (1997Gr09).
(2547 7)	4037.12	0.42 4	7.43 5	av E β =1054.5 33
				$I\beta^{-}: 0.45\% \ (1997Gr09).$
(2565 7)	4019.4	0.074 19	8.20 12	av E β =1062.9 33
				$I\beta^{-}: 0.08\% (1997 Gr 09).$
(3201 7)	3383.41	5.7 4	6.72 4	av Eβ=1363.7 34
				$I\beta^{-}: 6.17\% \ (1997Gr09).$
(3545 7)	3039.26	0.44 6	8.02 6	av E β =1527.8 34
				$I\beta^{-}: 0.48\% (1997Gr09).$
(3551 7)	3032.87	< 0.01	>9.7	av E β =1530.9 34
(3656 7)	2927.71	< 0.01	>9.7	av E β =1581.1 34
(3910 [‡] 7)	2674.0?	< 0.05	>9.2	av E <i>B</i> =1702.6 34
(4692 7)	1892.36	2.7 4	7.77 7	av E β =2078.2 34
. ,				$I\beta^{-}$: 4.01% (1997Gr09).
(5752 7)	831.68	26 2	7.19 4	av E β =2589.4 34
. ,				$I\beta^{-}$: 13.12% (1997Gr09).
(6584 7)	0	33 4	7.35 6	av $E\beta = 2990.8 34$
				$I\beta^-$: measured with a total absorption γ -ray spectrometer system operating in the 4
				$\pi \gamma$ - β coincidence mode (1996Gr20). Other values: 37% 5 (1976Wo05), and
				53% 5 (1981Ta05) may be more inaccurate because of the difficulty for

55% 5 (19811a05) may be more inaccurate because of the difficulty for separating out the contributions from the decay of 90 Rb (158 s) and 90 Rb (258 s).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{90}\mathrm{Sr})$

Iγ normalization: from Σ I(γ+ce) (to g.s.)=67% 3, using a measured value of 33% 4 (1996Gr20) for the β^- feeding to the g.s..

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α	Comments
196.8 4	2.4 4	5623.3		5426.66					
314.5 3	0.22 2	2207.04	(3 ⁻)	1892.36	2^{+}	[E1]			
543.6 10	1.6 7	4580.8		4037.12					
551.20 25	0.23 3	2207.04	(3 ⁻)	1655.92	4+	[E1]			
720.70 9	0.34 3	2927.71	4	2207.04	(3 ⁻)				
739.2 4	1.26 22	4366.05		3627.0					
752.1 3	1.77 22	4135.63	$(1,2^{+})$	3383.41					
/65.1 /	0.04 2	4148.86	4	3383.41	2+	50		0.00.10-4	
824.23 10	5.2 4	1655.92	4-	831.68	2*	E2		9.22×10 ⁻⁴	$\alpha(\mathbf{K})=0.000816\ I2;\ \alpha(\mathbf{L})=8.9/\times10^{-5}\ I3;\ \alpha(\mathbf{M})=1.506\times10^{-5}\ 21;\ \alpha(\mathbf{N})=1.88\times10^{-6}\ 3$ $\alpha(\mathbf{O})=1.204\times10^{-7}\ I7$ Mult: (824)(211)(0): A =0.12.5 A =0.04.6 (10817:05)
831.69 5	1000 <i>37</i>	831.68	2+	0	0+	E2		9.02×10 ⁻⁴	Mult: $(3247)(8517)(6)$: $A_2=0.12.5$, $A_4=0.04.6$ (19811405). $\alpha(K)=0.000798.12$; $\alpha(L)=8.77\times10^{-5}.13$; $\alpha(M)=1.471\times10^{-5}$ 21 ; $\alpha(N)=1.84\times10^{-6}.3$ $\alpha(O)=1.178\times10^{-7}.17$
886.3 <i>3</i>	1.6 3	3383.41		2497.31	(2^{+})				
892.5 7	0.7 3	4037.12		3144.9	(5 ⁻)				
985.4 5	0.59 18	3555.84		2570.62					
997.85 6	11.4 4	4037.12		3039.26	1				
1003.9 9	0.028 14	4148.86		3144.9	(5)				I_{γ} : From branching relative to the 331/ γ in 258-s β decay.
1027.1 4	0.50 /	3954.33 5197.52	$(1-2^{+})$	2927.71	4				
1050.05 /	7.0 5	1902.26	(1,2)	4140.00 021.60	2^+	M1 + E2	0 50 2	4.07×10^{-4}	$\alpha(K) = 0.000440.7$; $\alpha(L) = 4.75 \times 10^{-5}.7$; $\alpha(M) = 7.07 \times 10^{-6}.12$;
1000.70 4	239 8	1892.30	2	831.08	2	MI+E2	+0.50 3	4.97×10	$ α(\mathbf{K})=0.000440 \gamma; α(\mathbf{L})=4.75 \times 10^{-7} \gamma; α(\mathbf{M})=7.97 \times 10^{-7} 12; $ $ α(\mathbf{N})=1.002 \times 10^{-6} 14; α(\mathbf{O})=6.59 \times 10^{-8} 10 $ Mult.: D+Q from $\gamma\gamma(\theta)$. $\Delta\pi$ =no required by the level scheme.
1140.50 6	1.63 10	3032.87		1892.36	2+				
1146.96 25	1.07 13	3039.26	1	1892.36	2+				
1176.9 9	1.0 4	3383.41		2207.04	(3 ⁻)				
1271.77 7	0.98 6	2927.71	4	1655.92	4+				
1326.46 21	3.3 4	4366.05		3039.26	1			1	5
1375.36 <i>3</i>	4.5 7	2207.04	(3 ⁻)	831.68	2+	(E1(+M2))	-0.02 6	2.98×10^{-4}	$\alpha(K)=0.000124 \ 3; \ \alpha(L)=1.32\times10^{-5} \ 4; \ \alpha(M)=2.22\times10^{-6} \ 6; \ \alpha(N)=2.79\times10^{-7} \ 7; \ \alpha(O)=1.83\times10^{-8} \ 5$
^x 1430.4 4	1.26 22								
1438.3 8	0.8 3	4366.05		2927.71	4				
1456.7 <i>3</i>	0.95 9	3954.33		2497.31	(2^{+})				
1485.6 7	1.7 5	5041.01		3555.84					
1489.0 4	0.77 14	3144.9	(5 ⁻)	1655.92	4+				
1522.1 4	0.96 22	4019.4		2497.31	(2+)				

 $^{90}_{38}\mathrm{Sr}_{52}$ -3

$\gamma(^{90}\text{Sr})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α	Comments
1547.8 5	1.6 4	4580.8		3032.87			
1590.3 <i>3</i>	3.5 4	4973.99		3383.41			
1631.78 20	2.1 4	5187.52	$(1^{-},2^{+})$	3555.84			
1665.61 7	5.40 22	2497.31	(2^{+})	831.68 2+			
1668.9 0	3.8 13	5623.3		3954.33			
1/38.93 8	0.58 2	2570.62		$831.08 2^{\circ}$			
1/4/.5 5	0.95 11	5187 52	$(1-2^+)$	2207.04 (5)			
1004.107	15.2 5	2674.02	(1,2)	921 69 2+			
1842.5 - 3 1870 7 4	0.04	2074.02	(0^{-1})	831.08 Z			
1802 28 8	1.77	1802.36	2^+	0 0+	[E2]	4.11×10^{-4}	$\alpha(K) = 0.0001370.20$; $\alpha(L) = 1.464 \times 10^{-5}.21$; $\alpha(M) = 2.45 \times 10^{-6}.4$;
1092.20 0	14.4 0	1892.30	2	0 0	[E2]	4.11×10	$\alpha(N)=3.09\times10^{-7} 5; \alpha(O)=2.03\times10^{-8} 3$
1941.81 <i>17</i>	0.31 3	4148.86		2207.04 (3 ⁻)			
1973.3 [@] 10	1.0 4	5600.3?		3627.0			
1996.0 <i>10</i>	1.0 4	5623.3		3627.0			
*2119.7 8	1.9 7						5
2139.33 18	11.1 6	2971.14	0+	831.68 2+	E2	4.99×10 ⁻⁴	$\alpha(K)=0.0001094\ I6;\ \alpha(L)=1.167\times10^{-5}\ I7;\ \alpha(M)=1.96\times10^{-6}\ 3;$ $\alpha(N)=2.46\times10^{-7}\ 4$
							$\alpha(O)=1.625\times10^{-8}\ 23$
							Mult.: $(2139\gamma)(831\gamma)(\theta)$: A ₂ =0.23 <i>12</i> , A ₄ =1.28 <i>14</i> (1981Ta05).
2148.2 3	5.5 7	5187.52	$(1^{-},2^{+})$	3039.26 1	_		
2207.47 11	11.4 5	3039.26	1	831.68 2+	D		Mult.: $(220'\gamma)(831\gamma)(\theta)$: A ₂ =-0.47 10, A ₄ =-0.01 11 (19811a05).
2216.29 14	12.5 7	5187.52	$(1,2^{+})$	2971.14 01			
2239.7 8	4.1 22	5023.3 4127.6		3383.41 1802.26 2+			
2243.2 9	1.010	4137.0		1892.30 2			
2290.55 17	146	3954 33		1655 92 4+			
2473.94.20	15.4 15	4366.05		$1892.36 2^+$			
2476.7 11	2.7 17	4973.99		2497.31 (2 ⁺)			
2497.27 15	0.85 9	2497.31	(2^{+})	0 0+			
2688.9 5	3.1 6	4580.8		1892.36 2+			
2724.26 21	3.2 4	3555.84		831.68 2+			
2924.3 7	1.8 6	4580.8		1655.92 4+			
2980.7 6	2.4 5	5187.52	$(1^{-},2^{+})$	2207.04 (3-)			
3039.17 12	18.7 7	3039.26	1	$0 0^{+}$			
3081.3 4	3.9 7	4973.99		1892.36 2+			
3148.58 12	10.5 4	5041.01	$(1 - 2^{+})$	1892.36 2			
3293.09 14 3303 01 12	21.0 10 22 1 0	J187.52 4135.62	$(1, 2^{+})$ $(1, 2^{+})$	1092.30 2' 931.69 2+			
3317 00 12	22.1 9 7 10 00	4133.03	(1,2)	031.00 2 ⁺ 831.68 2 ⁺			
3361 88 13	7.12 22 24 4 10	5254 32		1892 36 2+			
3383.24 12	168.5	3383 41		$0 0^+$			
3534.24 13	101 3	5426.66		1892.36 2+			

4

					90	Rb β^- decay (158	s) 1981	a05 (contin	ued)				
	γ (⁹⁰ Sr) (continued)												
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}		
3627.4 7	3.2 13	3627.0		0	0^{+}	^x 4635.1 4	0.6 3			_			
^x 3664.0 5	2.1 4					4646.45 20	56.4 22	4646.35		0	0^{+}		
3814.36 20	14.7 10	4646.35		831.68	2^{+}	4790.2 [@] 7	1.6 4	4790.3?		0	0^{+}		
3958.4 [@] 8	2.0 6	4790.3?		831.68	2^{+}	4919.0 [@] 4	1.92 22	4919.06?		0	0^{+}		
4019.3 13	0.9 4	4019.4		0	0^{+}	^x 4934.8 7	0.89 22						
^x 4061.7 3	6.0 7					4974.14 25	5.2 4	4973.99		0	0^+		
4087.26 [@] 23	6.4 4	4919.06?		831.68	2^{+}	^x 5007.7 9	0.59 22						
4135.51 17	168 <i>6</i>	4135.63	$(1,2^{+})$	0	0^{+}	x5070.2 3	3.6 3						
^x 4278.4 8	1.3 4					5187.44 23	29.2 12	5187.52	$(1^{-},2^{+})$	0	0^{+}		
x4332.14 20	9.9 6					5254.27 25	5.8 4	5254.32		0	0^{+}		
4355.78 22	11.1 6	5187.52	$(1^{-},2^{+})$	831.68	2^{+}	^x 5299.5 9	0.43 14						
4365.90 18	200 7	4366.05		0	0^+	5333.01 [@] 24	10.8 5	5333.15?		0	0^+		
4500.8 [@] 10	0.9 4	5333.15?		831.68	2^{+}	5600.1 [@] 5	0.83 14	5600.3?		0	0^+		

^{\dagger} From 1981Ta05, except where noted.

[‡] From the Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.0399 22.
[@] Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

 $^{90}_{38}{
m Sr}_{52}{
m -}6$

90 Rb β^- decay (158 s) 1981Ta05

6

90 Rb β^- decay (158 s) 1981Ta05

8

90 Rb β^- decay (158 s) 1981Ta05

Decay Scheme (continued)

