⁵⁸ Ni(⁴⁰ Ca, $2\alpha\gamma$)	2004Bu13
---	----------

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020				

⁹⁰Ru Levels

2004Bu13: $E({}^{40}Ca)=135$ MeV from Legnaro XTU tandem accelerator. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(\theta)$, $\gamma\gamma(\theta)$ with the GASP array consisting of 40 Compton-suppressed HPGe detectors and an 80 BGO element inner ball. The ISIS Si ball of 40 Δ E-E telescopes was used for the detection of charged particles.

							-
E(level) [†]	J^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}
0.0^{\ddagger}	0^{+}	3983.5 [‡] 6	10^{+}	5827.9 [#] 7	13(-)	7655.7 [#] 8	(17 ⁻)
738.4 [‡] <i>3</i>	2^{+}	4198.3 [#] 6	9(-)	6099.4 8	15+	7675.3 8	
1639.0 [‡] 5	4+	4959.2 [‡] 7	12^{+}	6144.2 8		8023.9 9	
2524.9 [‡] 5	6+	4980.5 [#] 6	$11^{(-)}$	6261.6 8		8106.7? 9	
2602.8 [#] 5	5(-)	5311.5? 7		6389.9 8	16+	8377.2 9	
3037.2 [‡] 6	8+	5732.2 [‡] 8	14^{+}	6749.7 [#] 8	$15^{(-)}$	8623.2 9	(20^{+})
3300.8 [#] 6	$7^{(-)}$	5816.8 8	13+	7418.0 9	(18 ⁺)	9477.6 9	

[†] From least-squares fit to $E\gamma'$ s, by evaluators.

[‡] Band(A): Yrast Sequence.

[#] Band(B): Band based on $5^{(-)}$.

 $\gamma(^{90}\text{Ru})$

R(DCO)=I(γ_1 at 72°,90° or 108°; γ_2 at 35° or 145°)/ I(γ_1 at 35° or 145°; γ_2 at 72°,90° or 108°). All gating transition were $\Delta J=2$ in character yielding expected values of 0.5 for stretched dipole transitions and 1.0 for stretched quadrupole transitions.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
282.6 3	3.8 6	6099.4	15+	5816.8 13+	0	$A_2 = +0.4 3; A_4 = +0.1 3$
290.5 3	15.0 14	6389.9	16+	6099.4 15+	Ď	DCO=0.46 10; A ₂ =-0.37 14; A ₄ =-0.03 18
331.0 [‡] 3		5311.5?		4980.5 11 ⁽⁻⁾		
348.6 <i>3</i>	2.6 8	8023.9		7675.3		
367.2 <i>3</i>	17.9 <i>19</i>	6099.4	15+	5732.2 14+	D	DCO=0.62 9; A ₂ =-0.31 14; A ₄ =+0.1 3
412.0 <i>3</i>	2.0 5	6144.2		5732.2 14+		
444.8 3	2.7 8	6261.6		5816.8 13+		
451.0 [‡] 3		8106.7?		7655.7 (17 ⁻)		
512.2 3	57 4	3037.2	8+	2524.9 6+	Q	DCO=0.93 5; A ₂ =+0.35 12; A ₄ =+0.16 18
697.9 <i>3</i>	32 4	3300.8	$7^{(-)}$	2602.8 5 ⁽⁻⁾	Q	DCO=1.04 7; A ₂ =+0.23 23; A ₄ =-0.1 3
721.5 3	6.9 12	8377.2		7655.7 (17 ⁻)	(Q)	DCO=0.95 18; A ₂ =+0.04 22; A ₄ =-0.3 3
738.4 <i>3</i>	100	738.4	2+	$0.0 \ 0^+$	Q	DCO=1.04 6; A ₂ =+0.27 14; A ₄ =-0.01 18
773.0 <i>3</i>	25 <i>3</i>	5732.2	14^{+}	4959.2 12+	Q	DCO=1.16 20; A ₂ =+0.30 10; A ₄ =+0.04 16
776.0 <i>3</i>	2.2 14	3300.8	$7^{(-)}$	2524.9 6+		
782.5 <i>3</i>	27 4	4980.5	$11^{(-)}$	4198.3 9 ⁽⁻⁾	Q	DCO=1.06 11; A ₂ =+0.27 9; A ₄ =-0.09 14
847.4 <i>3</i>	21 4	5827.9	$13^{(-)}$	4980.5 11 ⁽⁻⁾	Q	DCO=0.86 12; A ₂ =+0.44 15; A ₄ =+0.02 24
857.6 <i>3</i>	7.1 12	5816.8	13+	4959.2 12+	D	DCO=0.46 <i>12</i> ; A ₂ =-0.11 <i>23</i> ; A ₄ =+0.8 5
886.0 <i>3</i>	61 5	2524.9	6+	1639.0 4+	Q	DCO=1.00 11; A ₂ =+0.26 10; A ₄ =-0.03 16
897.5 <i>3</i>	32 5	4198.3	9(-)	3300.8 7 ⁽⁻⁾	Q	DCO=1.07 17; A ₂ =+0.14 8; A ₄ =-0.21 12
900.6 <i>3</i>	97 4	1639.0	4+	738.4 2+	Q	DCO=1.00 9; A ₂ =+0.20 5; A ₄ =-0.10 8
906.0 <i>3</i>	10.8 16	7655.7	(17 ⁻)	6749.7 15 ⁽⁻⁾	Q	DCO=0.98 4; A ₂ =+0.54 21; A ₄ =+0.27 20

Continued on next page (footnotes at end of table)

⁵⁸Ni(⁴⁰Ca, $2\alpha\gamma$) 2004Bu13 (continued)

$\gamma(^{90}\text{Ru})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	Comments
921.8 <i>3</i>	14.9 24	6749.7	15 ⁽⁻⁾	5827.9 13(-)	Q	DCO=0.9 3; A ₂ =+0.28 24; A ₄ =+0.03 33
925.6 <i>3</i>	3.3 9	7675.3		6749.7 15 ⁽⁻⁾		
946.1 <i>3</i>	45 4	3983.5	10^{+}	3037.2 8+	Q	DCO=0.97 8; A ₂ =+0.19 16; A ₄ =-0.08 21
963.7 <i>3</i>	37 4	2602.8	$5^{(-)}$	1639.0 4+	D	DCO=0.61 5; A ₂ =-0.15 14; A ₄ =+0.6 3
975.7 <i>3</i>	40 4	4959.2	12^{+}	3983.5 10+	Q	DCO=0.92 8; A ₂ =+0.28 9; A ₄ =-0.10 18
996.8 [‡] 3	1.4 8	4980.5	$11^{(-)}$	3983.5 10+		
1028.1 3	12.2 18	7418.0	(18^{+})	6389.9 16+	Q	DCO=0.9 3; A_2 =+0.2 3; A_4 =-0.05 43
1100.3 <i>3</i>	3.9 10	9477.6		8377.2	(Q)	DCO=0.9 3; A ₂ =-0.2 3; A ₄ =+0.3 4
						Mult.: negative value of A ₂ is inconsistent with Q assignment.
1161.3 [‡] 3		4198.3	9(-)	3037.2 8+		E_{γ} : from figure 1 of 2004Bu13; not listed in authors' table I.
1205.2 3	8.3 17	8623.2	(20^{+})	7418.0 (18+)	Q	DCO=1.09 22; A ₂ =+0.15 18; A ₄ =+0.3 4

 † 0.3 keV uncertainty assigned by evaluators based on a general statement by 2004Bu13 that errors are below 0.3 keV. ‡ Placement of transition in the level scheme is uncertain.

⁵⁸Ni(⁴⁰Ca,2αγ) 2004Bu13

 $^{90}_{44}$ Ru $_{46}$