58 Ni(36 Ar,2p2n γ) 1994He09

History

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020	

1994He09: 58 Ni(36 Ar,2p2n γ), E=149 MeV. 99.98% enriched 58 Ni target. Measured γ rays using the OSIRIS array of 12 Compton-suppressed hyperpure germanium detectors. Measured E γ , I γ , n $\gamma\gamma$ coin, p $\gamma\gamma$ coin. Charge-particle and neutron detectors: Δ E silicon surface barrier for protons, NE213 for neutrons.

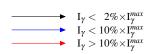
90Ru Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	0+	
738.00 <i>10</i>	(2^{+})	
1638.11 <i>14</i>	(4^{+})	
2584.3 <i>3</i>	(6 ⁺)	E(level): This level has been omitted from Adopted Levels; instead a level at 2524.5 keV has been adopted based on more extensive measurement in 58 Ni(40 Ca, $^{2}\alpha\gamma$) dataset.
3096.2 4	(8+)	E(level): This level has been omitted from Adopted Levels; instead a level at 3037.7 keV has been adopted based on more extensive measurement in 58 Ni(40 Ca, $^{2}\alpha\gamma$) dataset.
3981.8 7	(10^+)	
4957.4 8	(12^+)	
5730.4 <i>13</i>	$(13^+,14^+)$	
6097.4 <i>16</i>	(15^+)	
6387.9 <i>19</i>	(16^+)	

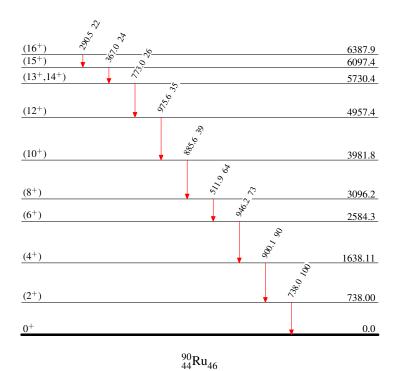
[†] Deduced by evaluators from a least-squares fit to γ -ray energies.

γ(⁹⁰Ru)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
290.5 10	22 3	6387.9	(16^+)	6097.4	(15^+)	
367.0 10	24 3	6097.4	(15^{+})	5730.4	$(13^+,14^+)$	
511.9 <i>3</i>	64 8	3096.2	(8+)	2584.3	(6^+)	
738.0 <i>1</i>	100 12	738.00	(2^{+})	0.0	0^{+}	
773.0 10	26 4	5730.4	$(13^+,14^+)$	4957.4	(12^{+})	
885.6 <i>5</i>	39 7	3981.8	(10+)	3096.2	(8+)	E_{γ} : This γ -ray has been interchanged with 946.2 keV γ -ray by 2004Bu13 in 58 Ni(40 Ca,2 $\alpha\gamma$) dataset from intensity consideration and placed below 512.2 keV γ -transition.
900.1 <i>1</i>	90 14	1638.11	(4^{+})	738.00	(2^{+})	•
946.2 3	73 11	2584.3	(6 ⁺)	1638.11	(4 ⁺)	E_{γ} : This γ -ray has been interchanged with 885.6 keV γ -ray by 2004Bu13 in 58 Ni(40 Ca,2 $\alpha\gamma$) dataset from intensity consideration and placed above 512.2 keV γ -transition.
975.6 <i>5</i>	35 5	4957.4	(12^+)	3981.8	(10^+)	,


[†] Uncertainties in E γ are 0.1-1.0 keV, depending on the γ -ray energy and intensity. Values for individual transitions are estimates assigned by the evaluators.

 $^{^{\}ddagger}$ J^{π} values are from authors' assignments based on systematics in this mass region and shell-model calculations. The energies of the most intense γ -ray transitions are very similar to those in the isotone ⁸⁸Mo. Thus, the detected γ rays have been assumed to belong to a cascade connecting yrast states with even parity.


⁵⁸Ni(³⁶Ar,2p2nγ) 1994He09

Level Scheme

Intensities: Relative I_{γ}

Legend

