Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020		

 $Q(\beta^{-}) = -11990 SY; S(n) = 13910 SY; S(p) = 730 SY; Q(\alpha) = -2550 SY$ 2017Wa10

 $\Delta Q(\beta^{-})=500; \Delta S(n)=470; \Delta S(p)=\Delta Q(\alpha)=420$ (2017Wa10).

S(2n)=30980 (syst) 500; S(2p)=4600 (syst) 340; Q(\varepsilon p)=8410 (syst) 300 (2017Wa10).

1995He39,1995Mo26,1994He28: ⁹⁰Rh produced by fragmentation of a ¹⁰⁶Cd beam (E=6.36 GeV) on a natural Ni target. Mass separation and identification of ⁹⁰Rh using the A1200 Fragment Mass Separator of the National Superconducting Cyclotron Laboratory at Michigan State University.

- 2001Ki13,2002Fa13: ⁹⁰Rh produced by fragmentation of a ¹¹²Sn beam (E=1GeV/A) on a Be target. Halflives and other decay properties measured after isotopic separation by Fragment Separator (FRS) of GSI, Darmstadt and implanting the radionuclides in a stack of position sensitive Si-detectors, used as a microcalorimeter. The microcalorimeter was surrounded by a segmented NaI-detector and a Ge-clover detector allowing β - γ coincidence studies of implanted and identified nuclei.
- NaI-detector and a Ge-clover detector allowing β - γ coincidence studies of implanted and identified nuclei. 2019Pa16: ⁹⁰Rh produced in fragmentation of a ¹²⁴Xe beam with E=345 MeV/nucleon on a ⁹Be target at RIKEN. Fragments separated and identified using the BigRIPS and ZeroDegree spectrometers. Nuclei were implanted into one of the DSSDs of the WAS3ABi array consisting of three DSSDs and ten single-sided silicon strip detectors. Measured implant- β , implant- β -p, implant- β (t), and implant- β -p(t). Deduced T_{1/2} and decay branching ratio.

⁹⁰Rh Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	(0^{+})	29 ms <i>3</i>	$\% \varepsilon + \% \beta^+ = 100; \ \% \varepsilon p = 0.7 < (2019 Pa 16)$
			$T_{1/2}$: from implant- β (t) in 2019Pa16. Other: 12 ms +9-4 from implant- β (t) (2001Ki13, 2002Fa13).
			$\%$ p: from the number of β p decays relative to the total number decays (2019Pa16).
			J^{π} : from log <i>ft</i> =3.6 to 0 ⁺ ground state of ⁹⁰ Ru.
0.0+x	(6,7,8)	0.56 s 2	$\%\varepsilon + \%\beta^{+} = 100; \ \%\varepsilon p = 9.6 \ \overline{10} \ (2019Pa16)$
			$T_{1/2}$: weighted average of 0.55 s 3 from implant- $\beta(t)$ and 0.58 s 4 from implant- β -p(t), both
			from 2019Pa16. Other: 1.0 s $+3-2$ from implant- β (t) (2001Ki13, 2002Fa13).
			$\%\varepsilon_{\rm P}$: from the number of $\beta_{\rm P}$ decays relative to the total number decays (2019Pa16).
			J^{π} : no β feeding to yrast 4 ⁺ in ⁹⁰ Ru; population of (13/2 ⁺) and (9/2 ⁺) levels in β p decay to
			⁸⁹ Tc; shell model calculations in 2019Pa16 predict $J^{\pi}=7^+$.