Adopted Levels, Gammas

History												
		Ty	pe	Author	Citation	Literature Cutoff Date						
		Full Eva	aluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020						
$Q(\beta^{-})=6584$ 7 S(2n)=12898 8 α : Additional	; S(n)=: 8; S(2p) informa	5723 8; S(j =23226 7 tion 1.	p)=10118 (2017Wa1	7; $Q(\alpha) = -6157\ 7\ 2017Wa1$	0							
				⁹⁰ Rb L	evels							
				Cross Reference	(AREF) Flags							
				$ \begin{array}{rcl} \mathbf{A} & {}^{90}\mathrm{Kr} \ \beta^{-} \ \mathrm{de} \\ \mathbf{B} & {}^{90}\mathrm{Rb} \ \mathrm{IT} \ \mathrm{de} \\ \mathbf{C} & {}^{235}\mathrm{U}(\mathrm{n},\mathrm{F}\gamma) \end{array} $	ecay (258 s)							
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF		Comments							
0	0-	158 s 5	ABC	$\%\beta^-=100$ J ^{π} : J=0 from atomic-beam measurement (1979Ek02). π from ⁹⁰ Rb(g.s.) β^- decay with log $f^{1u}t=8.42$ 6 to ⁹⁰ Sr(832) 2 ⁺ state. T _{1/2} : weighted average of 153 s 3 (1969Ca03) and 162 s 3 (1977Hu03), both from γ (t) with mass separated sources and Ge(Li).								
106.90 <i>3</i>	3-	258 s 4	ABC	$%\beta^{-}=97.5 4; %IT=2.5 4$ μ=1.6160 6 (1981Th04) Q=+0.25 7 (1981Th04,2016St14) %IT: from measured Iγ, α and normalization (1981Ta05), see ⁹⁰ Rb β ⁻ decay (258 s). J ^π : J=3 from atomic-beam measurement (1979Ek02); M3 106.9γ to 0 ⁻ . T _{1/2} : weighted average of 258 s 5 (1967Am01) and 258 s 4 (1977Hu03), both from γ(t) with mass separated sources and Ge(Li). μ: from atomic-beam laser spectroscopy (1981Th04). Other: 1.612 5 (atomic-beam magnetic resonance, 1979Ek02). Q: from atomic-beam laser spectroscopy (1981Th04,2016St14). Measured value given in 1981Th04 is 0.20 5, evaluated to +0.25 7 by 2016St14.								
121.79 <i>3</i> 162.72 <i>18</i>	(1 ⁻) 4 ⁻	<7 ns	A C	J^{π} : (M1) 121.8 γ to 0 ⁻ . J^{π} : M1+E2 55.8 γ to 3 ⁻ .								
$\begin{array}{c} 227.83 \ 3\\ 242.19 \ 3\\ 356.23 \ 3\\ 536.91 \ 6\\ 614.42 \ 4\\ 661.28 \ 3\\ 676.10 \ 5\\ 712.46 \ 8\\ 740.87 \ 5\\ 838.20 \ 4\\ 933.08 \ 6\\ 1102.19 \ 6\\ 1102.19 \ 6\\ \end{array}$	(2 ⁻)	<7 pc	A A A A A A A A A A	Configuration $-\lambda p_{3/2} \otimes \nu(u_{5/2})$ or less likely $\lambda l_{5/2} \otimes \nu(u_{5/2})$. J^{π} : (M1+E2) 106.05 γ to (I ⁻) and (M1+E2) 120.92 γ to 3 ⁻ .								
1127.90 20	(5.)	< / ns	A	J^{*} : $\gamma\gamma(\theta)$ for 905-50 cascade favors (5 ⁺).	$\ln 200 \text{ U(n, F}\gamma)$ gives 5 0	f 6; (M1+E2) 365.1 γ from 6(1)						
1204.75 20	5	<7 ns	C	J ^π : from $\gamma\gamma(\theta)$ for the 1042-5 the $\gamma\gamma(\theta)$ analysis. Proposed configuration= $\pi f_{5\rho}^{-1}$	5.8 cascade in 235 U(n,F $\otimes \nu(d_{5/2}^3)$ (2016Cz01) wl	$^{7}\gamma$); J=4 and 6 are excluded by nich would result in $J^{\pi}=5^{-}$.						
1400.6 <i>4</i> 1462.97 <i>16</i>			A A	5/2	5,2							

Adopted Levels, Gammas (continued)

90Rb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
1492.98 <i>21</i>	6 ⁽⁺⁾	<7 ns	С	J^{π} : $\gamma\gamma(\theta)$ data for 365-965 cascade in ²³⁵ U(n,F γ) are consistent with 6->5->4 or 6->6->6->4 sequences and large $\delta(Q/D)$ value for the 365 γ in both spin sequences. This implies mult=M1+E2, and thus the same parity for 1493 and 1128 levels. The $\gamma\gamma(\theta)$ data for the 288-1042 cascade is consistent with J=5 or 6 for 1493 level. Absence of transition to 163, 4 ⁻ level suggests positive parity for J=6 for the 1493 level.
1688.17 18			Α	
1703.67 23	(7,6)	<7 ns	C	J^{π} : $\gamma\gamma(\theta)$ in ²³⁵ U(n,F γ) is consistent with J=6 or 7, but absence of transitions to 1128, (5 ⁺) and 1204, 5 makes J=6 less likely.
1780.01 <i>3</i>	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log $f = 4.6$.
1901.63 12			Α	, , , , , , , , , , , , , , , , , , , ,
2127.58 5	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log ft=5.78.
2271.34 9			Α	
2433.59 19			Α	
2500.4 4	$(8^+,7)$		С	J^{π} : 1007.1 γ to 6 ⁽⁺⁾ .
2686.96 25	(8,9)		С	J^{π} : 186.5 γ to (8 ⁺ ,7), 983.3 γ to (7,6).
3083.07 7	1+		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log ft=4.9.
3093.74 12	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log ft=5.3.
3238.68 14	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log ft=5.7.
3401.3 <i>3</i>			С	, , , , , , , , , , , , , , , , , , , ,
3475.6 4			Α	
3518.2 4			С	
3625.2 4	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log ft=5.3.
3633.8 6			С	
3703.98 20	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log <i>ft</i> =4.9.
3878.6 <i>3</i>	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log <i>ft</i> =4.9.
3881.3 <i>3</i>	1^{+}		Α	J^{π} : β^{-} decay from ⁹⁰ Kr(g.s.) with log <i>ft</i> =4.5.

[†] From least-squares fit to adopted γ -ray data. [‡] From $\gamma\gamma(t)$ in ²³⁵U(n,F γ), except where noted.

						Ado	pted Levels,	Gammas (co	ontinued)
γ (⁹⁰ Rb)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	δ	α	Comments
106.90	3-	106.92 15	100	0	0-	M3		10.76	$\alpha(K)=8.72$ 14; $\alpha(L)=1.72$ 3; $\alpha(M)=0.294$ 5; $\alpha(N)=0.0314$ 5; $\alpha(O)=0.001041$ 16 B(M3)(W.u.)=0.0085 15 Mult.: from $\alpha(K)\exp(\alpha(L)\exp=6.2$ 12 in ⁹⁰ Kr β^- decay and level
121.79	(1 ⁻)	121.82 <i>3</i>	100	0	0-	(M1)		0.0844	scheme requirement of $\Delta J=3$. $\alpha(K)=0.0744 \ 11; \ \alpha(L)=0.00838 \ 12; \ \alpha(M)=0.001386 \ 20; \ \alpha(N)=0.0001564 \ 22 \ \alpha(O)=6.64\times10^{-6} \ 10 \ M_{\rm ell} = 6.64\times10^{-6} \ M_{\rm ell} = 6.6\times10^{-6} \ M_{\rm ell} = 6.6\times10^{$
162.72	4-	55.8 <i>1</i>	100	106.90	3-	M1+E2	0.298 25	1.35 10	Mult., α : from α (K)exp in β decay. α (K)=1.12 8; α (L)=0.191 19; α (M)=0.032 3; α (N)=0.0033 3; α (O)=9.0×10 ⁻⁵ 6 Mult. S. form α (cm) in 2^{235} L(c Eq.)
227.83	(2-)	106.05 3	12.8 8	121.79	(1-)	(M1+E2)	0.5 2	0.255 85	Mult.,o: from $\alpha(\exp)$ in $(0, r\gamma)$. $\alpha(K)=0.220\ 72;\ \alpha(L)=0.030\ 12;\ \alpha(M)=0.0049\ 19;\ \alpha(N)=5.3\times10^{-4}$ $20;\ \alpha(O)=1.78\times10^{-5}\ 53$
		120.92 <i>3</i>	100 7	106.90	3-	(M1+E2)	0.5 2	0.165 52	Mult., δ : from α (K)exp in ⁵⁰ Kr β decay. α (K)=0.143 44; α (L)=0.0187 66; α (M)=0.0031 11; α (N)=3.3×10 ⁻⁴ 12; α (O)=1.18×10 ⁻⁵ 33
		227.76 8	3.6 4	0	0-	[E2]		0.0478	Mult., δ : from α (K)exp in ⁹⁰ Kr β^{-} decay. α (K)=0.0418 δ ; α (L)=0.00510 δ ; α (M)=0.000840 <i>12</i> ; α (N)=9.16×10 ⁻⁵ <i>13</i> : α (O)=3.40×10 ⁻⁶ 5
242.19		242.19 <i>3</i>	100	0	0^{-}				<i>a</i> (11)=5.10×10 15, <i>a</i> (0)=5.10×10 5
356.23		234.44 3	100 5	121.79	(1^{-})				
		249.32 3	52 5 4.0 15	0	3 0 ⁻				
536.91		180.66 15	26 14	356.23	0				
		309.07 9	92 8	227.83	(2 ⁻)				
(14.40		429.93 14	100 21	106.90	3^{-}				
614.42		386.48 9	10.7 10	227.83	(2) (1^{-})				
		508.0 3	5.2 16	106.90	3^{-}				
		614.38 9	17.4 13	0	0^{-}				
661.28		305.10 18	0.18 4	356.23					
		419.12 5	1.04 4 4 24 13	242.19	(2^{-})				
		539.49 4	100.0 23	121.79	(1^{-})				
		554.37 5	16.5 4	106.90	3-				
(7(10		661.23 5	1.08 4	0	0^{-}				
676.10		433.9 <i>3</i> 569.20.5	17.6 100.4	242.19	3-				
712.46		470.34 8	100 4	242.19	5				
740.87		498.59 12	14.0 11	242.19					
		619.08 5	100 3	121.79	(1 ⁻)				

ω

 $^{90}_{37}$ Rb₅₃-3

Adopted Levels, Gammas (continued) γ (⁹⁰Rb) (continued) E_{γ}^{\dagger} I_{γ}^{\dagger} \mathbf{E}_{f} \mathbf{J}_{f}^{π} E_i (level) \mathbf{J}_i^{π} Mult. δ Comments α 106.90 3-838.20 731.33 4 100 933.08 220.82 14 712.46 10 5 396.54 21 13 *3* 536.91 577.1 3 14 4 356.23 100 4 242.19 690.72 7 705.47 12 $227.83 (2^{-})$ 31 3 1102.19 565.19 8 100 8 536.91 745.8 4 30 10 356.23 980.29 11 918 121.79 (1⁻) 965.2[‡] 1 100^{\ddagger} 1127.90 (5^{+}) 162.72 4- $\delta: \delta(Q/D) = +0.24 + 21 - 28 \text{ or } +3 + 16 - 3 \text{ for } J(1127.9 \text{ level}) = 5$ from $\gamma \gamma(\theta)$ in ²³⁵U(n,F γ). 1153.41 925.49 9 100 7 $227.83(2^{-})$ 1031.2 3 28 7 121.79 (1-) 1042.0[‡] 1 100[‡] 4 Mult., δ : from $\gamma \gamma(\theta)$ in ²³⁵U(n, F γ). 5 162.72 4-1204.75 D(+Q)-0.08 + 26 - 29739.0 10 1400.6 40 14 661.28 1293.7 4 100 27 106.90 3-1462.97 1341.31 22 100 121.79 (1⁻) $6^{(+)}$ 100[‡] 16 288.2[‡] 1 1492.98 1204.75 5 D,D+Q Mult., δ : δ (Q/D)=+0.05 4 or +8.5 +48-22 for J(1492.98 level)=6 from $\gamma\gamma(\theta)$ in ²³⁵U(n,F γ). Mult., δ : δ (Q/D)=+0.76 +13-11 or -3.5 +8-14 for J(1492.98 level)=5 from $\gamma\gamma(\theta)$ in ²³⁵U(n,F γ). 365.1[‡] 1 67[‡] 16 α (K)=0.0063 *19*; α (L)=7.1×10⁻⁴ *23*; α (M)=1.18×10⁻⁴ *38*; 1127.90 (5⁺) (M1+E2) 0.0072 22 $\alpha(N)=1.32\times10^{-5} 41; \alpha(O)=5.4\times10^{-7} 15$ Mult.: all $\gamma\gamma(\theta)$ solutions in ²³⁵U(n,F γ) lead to significant quadrupole admixture suggestive of mult=(M1+E2) rather than (E1+M2). $\delta: \delta(Q/D) = +0.47 + 42 - 31 \text{ or } +1.8 + 26 - 17 \text{ for } J(1127.9)$ level)=5 from $\gamma\gamma(\theta)$ in ²³⁵U(n,F γ). 1688.17 1102.19 585.86 20 76 12 947.6 4 88 30 740.87 1460.6 5 100 30 227.83 (2⁻) 1492.98 6⁽⁺⁾ 210.7[‡] 1 100^{\ddagger} (7,6)1703.67 1^{+} 1780.01 626.49 8 0.73 5 1153.41 677.69 7 0.98 5 1102.19 941.86 5 3.43 9 838.20 1039.11 8 1.07 5 740.87 0.88 5 1103.92 7 676.10

1118.69 5

1165.56 6

1423.77 6

1537.85 5

1552.18 6

100.0 22

24.8 5

2.12 8

7.53 17

5.63 14

661.28

614.42

356.23

242.19

 $227.83(2^{-})$

 ${}^{90}_{37}\text{Rb}_{53}$ -4

γ (⁹⁰Rb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π
1780.01	1+	1658.18 6	3.40 9	121.79 (1-)	3093.74	1^{+}	2160.9 6	17 5	933.08	
		1780.04 6	17.2 4	0 0-			2352.7 4	47 9	740.87	
1901.63		1240.34 11	100	661.28			2417.33 23	100 9	676.10	
2127.58	1+	1386.62 15	14.2 14	740.87			2432.78 21	80 <i>9</i>	661.28	
		1466.26 15	17.9 <i>14</i>	661.28			2479.4 7	20 11	614.42	
		1885.42 15	16.4 12	242.19			2865.73 21	98 <i>9</i>	227.83	(2^{-})
		1899.61 <i>16</i>	13.9 12	227.83 (2 ⁻)	3238.68	1^{+}	967.33 11	100 9	2271.34	
		2006.00 14	8.5 15	121.79 (1-)			2497.6 15	74	740.87	
		2127.52 7	100 4	$0 0^{-}$			3010.3 8	15 6	227.83	(2^{-})
2271.34		1530.50 20	14 7	740.87	3401.3		714.6 [‡] 2	100‡	2686.96	(8,9)
		2149.51 10	100 5	121.79 (1-)	3475.6		392.6 4	100 50	3083.07	1+
2433.59		1692.6 5	69 18	740.87			1695.2 <i>19</i>	55 32	1780.01	1^{+}
		1819.1 <i>3</i>	66 11	614.42	3518.2		117.2 2	$1.0 \times 10^2 \ 3$	3401.3	
		2191.5 3	100 11	242.19			830.7 <i>3</i>	6.×10 ¹ 3	2686.96	(8,9)
		2205.6 6	34 11	227.83 (2 ⁻)	3625.2	1^{+}	2948.8 5	59 <i>30</i>	676.10	
2500.4	(8 ⁺ ,7)	1007.1 [‡] 5	100	1492.98 6 ⁽⁺⁾			3269.0 4	100 18	356.23	
2686.96	(8,9)	186.5 [‡] 3	33 [‡] 13	2500.4 (8 ⁺ ,7)	3633.8		1133.4 [‡] 4	100 [‡] 3	2500.4	(8 ⁺ ,7)
		983.3 [‡] 1	100 [‡] 20	1703.67 (7,6)	3703.98	1^{+}	465.28 19	100 17	3238.68	1+
3083.07	1+	1303.4 <i>3</i>	10.7 18	1780.01 1+			621.3 9	$6. \times 10^{1} 4$	3083.07	1+
		1620.22 22	17.4 18	1462.97			2770.9 4	83 17	933.08	
		1980.99 <i>15</i>	19.6 <i>14</i>	1102.19	3878.6	1^{+}	1751.0 <i>3</i>	100 20	2127.58	1+
		2421.5 8	5.8 18	661.28			3217.1 <i>21</i>	19 <i>15</i>	661.28	
		2468.56 11	54 5	614.42	3881.3	1^{+}	3205.1 6	31 8	676.10	
		2726.68 11	100 4	356.23			3344.3 <i>3</i>	100 14	536.91	
		2855.4 <i>3</i>	37 8	227.83 (2-)						

[†] From ⁹⁰Kr β^- decay. [‡] From ²³⁵U(n,F γ).

S

Adopted Levels, Gammas

 $^{90}_{37} Rb_{53}$

6

Adopted Levels, Gammas

⁹⁰₃₇Rb₅₃

 ∞

From ENSDF

 $^{90}_{37}$ Rb₅₃-8