235 U(n,F γ) 2016Cz01

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020	

2016Cz01: E(n)=cold neutrons from PF1B facility of the Institut Laue-Langevin (ILL), Grenoble. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, $\gamma\gamma(t)$, and $\gamma\gamma\gamma$ -coincidences between transitions in ⁹⁰Rb and those in complementary fission fragments ¹⁴³Cs and ¹⁴⁴Cs within a 200 ns time window using EXOGAM array.

⁹⁰Rb Levels

E(level) [†]	$J^{\pi #}$	$T_{1/2}^{(0)}$	Comments
0.0	0-		Configuration= $\pi p_{2/2}^{-1} \otimes v(d_{5/2}^3)_{3/2}$ (2016Cz01).
106.92 15	3-		E(level): from the Adopted Levels, held fixed in least-squares adjustment.
			Configuration= $\pi p_{3/2}^{-1} \otimes \nu(d_{5/2}^3)$ or $\pi f_{5/2}^{-1} \otimes \nu(d_{5/2}^3)$.
162.72 18	4-	<7 ns	Configuration= $\pi p_{3/2}^{2^+\Gamma} \otimes \nu(d_{5/2}^{3^+\Gamma})$ or less likely $\pi f_{5/2}^{-1} \otimes \nu(d_{5/2}^3)$.
1127.90 [‡] 20	(5 ⁺)	<7 ns	J^{π} : $\gamma\gamma(\theta)$ for 965-56 cascade gives 5 or 6; 365.1 (M1+E2) γ from 1493, 6 ⁽⁺⁾ favors (5 ⁺).
1204.75 20	5	<7 ns	J^{π} : J=4 and 6 are not consistent with $\gamma\gamma(\theta)$ result for the 1042-55.8 cascade, with $\delta(55.8)=0.302$ (2016Cz01).
			Proposed configuration= $\pi f_{5/2}^{-1} \otimes \nu(d_{5/2}^3)$ would give $J^{\pi} = 5^-$.
1492.98 [‡] 21	6(+)	<7 ns	J^{π} : $\gamma\gamma(\theta)$ data for 365-965 cascade are consistent with 6 ->5 ->4 or 6 -> 6 ->4 sequences and large $\delta(Q/D)$ value for the 365 γ in both spin sequences. This implies mult=M1+E2, and thus the same parity for 1493 and 1128 levels. The $\gamma\gamma(\theta)$ data for the 288-1042 cascade is consistent with J=5 or 6 for 1493 level. Absence of transition to 163, 4 ⁻ level suggests positive parity for J=6 for the 1493 level.
1703.67 [‡] 23	(7)	<7 ns	J^{π} : $\gamma\gamma(\theta)$ consistent with J=6 or 7, but absence of transitions to 1128, (5 ⁺) and 1204, 5 makes J=6 less likely.
2500.4 <i>4</i> 2686.96 25 3401.3 <i>3</i> 3518.2 <i>4</i> 3633.8 6	(7,8 ⁺) (8,9 ⁺)		J^{π} : (8 ⁺) is more likely if this is an yrast level.

[†] From least-squares fit to E γ , by evaluators, except where noted. [‡] Proposed member of $\pi g_{9/2} \otimes \nu d_{5/2}^3$ multiplet.

[#] As proposed by 2016Cz01, based on angular correlation measurements, yrast pattern of population of levels, decay characteristics, and comparison with shell-model predictions.

[@] From $\gamma\gamma(t)$ (2016Cz01).

γ (⁹⁰ Rb)									
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
55.8 1	90 9	162.72	4-	106.92	3-	M1+E2	0.298 25	1.35 10	$\alpha(\exp)=1.35 \ 10 \ (2016Cz01)$ $\alpha(\exp):$ deduced by 2016Cz01 from intensity balance.
106.92 15		106.92	3-	0.0	0-				E_{γ} : from the Adopted Gammas.
117.2 2	72	3518.2		3401.3					
186.5 <i>3</i>	52	2686.96	$(8,9^+)$	2500.4	$(7,8^+)$				
210.7 1	44 8	1703.67	(7)	1492.98	6(+)				$\begin{array}{l} (211\gamma)(288\gamma)(\theta): \ {\rm A}_2{=}{+}0.029 \ 31, \\ {\rm A}_4{=}{+}0.064 \ 68. \end{array}$

					²³⁵ U(n,	F γ) 2016	Cz01 (continued)	
$\gamma(^{90}\text{Rb})$ (continued)								
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments
								$\begin{split} \overline{\delta(Q/D) = +0.01 + l2 - l1} & \text{or } +16 + \infty - l1 \\ \text{for } J(1703.67 \text{ level}) = 7. \\ \overline{\delta(Q/D) = +1.0 + l1 - 4} & \text{or } -4.4 + 23 - \infty \text{ for } \\ J(1703.67 \text{ level}) = 6. \\ (211\gamma)(365\gamma)(\theta): & A_2 = -0.036 \ 30, \\ A_4 = -0.018 \ 64. \\ \overline{\delta(Q/D) = +0.075} & \text{or } +8.8 + 54 - 25 \text{ for } \\ J(1703.67 \text{ level}) = 7 \text{ and } J(1127.9 \\ \text{level}) = 5. \\ \overline{\delta(Q/D) = +0.0642} & \text{or } +8.8 + 48 - 24 \text{ for } \\ J(1703.67 \text{ level}) = 7 \text{ and } J(1127.9 \\ \text{level}) = 6. \\ \overline{\delta(Q/D) = +0.81 + l5 - l2} & \text{or } -2.9 + 6 - l1 \text{ for } \\ J(1703.67 \text{ level}) = 6 \text{ and } J(1127.9 \\ \text{level}) = 5. \end{split}$
288.2 1	58 9	1492.98	6 ⁽⁺⁾	1204.75	5	D,D+Q		$(288\gamma)(1042\gamma)(\theta)$: A ₂ =+0.038 26, A ₄ =+0.007 56. $\delta(Q/D)$ =+0.05 4 or +8.5 +48-22 for J(1492.98 level)=6. $\delta(Q/D)$ =+0.76 +13-11 or -3.5 +8-14 for J(1492.98 level)=5.
365.1 1	39 9	1492.98	6(+)	1127.90	(5 ⁺)	(M1+E2)		Mult.: all $\gamma\gamma(\theta)$ solutions lead to significant quadrupole admixture suggestive of mult=(M1+E2) rather than (E1+M2). (365 γ)(965 γ)(θ): A ₂ =-0.059 48, A ₄ =+0.01 10. δ (Q/D)=+0.47 +42-31 or +1.8 +26-17 for J(1127.9 level)=5. δ (Q/D)=+0.45 +18-16 or -1.46 +56-39 for J(1127.0 level)=6
714.6 2 830.7 3 *880 3 1	72 42 42	3401.3 3518.2		2686.96 2686.96	(8,9 ⁺) (8,9 ⁺)			101 J(1127.9 level)=0.
965.2 1	44 8	1127.90	(5 ⁺)	162.72	4-			(965 γ)(56 γ)(θ): A ₂ =+0.044 89, A ₄ =+0.11 21. δ (Q/D)=+0.24 +21-28 or +3 +16-3 for J(1127.9 level)=5. δ (O/O)=0 for J(1127.9 level)=6.
983.3 <i>1</i>	15 <i>3</i>	2686.96	(8,9 ⁺)	1703.67	(7)			
1007.1 <i>5</i> 1042.0 <i>1</i>	10 <i>3</i> 100 <i>4</i>	2500.4 1204.75	(7,8 ⁺) 5	1492.98 162.72	6 ⁽⁺⁾ 4 ⁻	D(+Q)	-0.08 +26-29	$(1042\gamma)(56\gamma)(\theta): A_2 = -0.046\ 86,$
1133.4 4	8 <i>3</i>	3633.8		2500.4	(7,8+)			14-10.07 10.

[†] From $\gamma\gamma(\theta)$ in 2016Cz01, except where noted.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

235 U(n,F γ) 2016Cz01 Legend Level Scheme $\begin{array}{c|c} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} + 1/33.4 8 3633.8 214.0 3518.2 3401.3 + 983,3 15 4 166.5 5 \$ (8,9^+) 1.2001 2686.96 (7,8+) 2500.4 + 3₆₅₇ | |a_{17×E2)39} ** ²⁸82 | 1.22,038 + *210,5*44 00/0x1 00/0x1 00/00/ (7) <u>1703.67</u> <7 ns 6(+) 1492.98 <7 ns - 95. - 95. - 44 -1204.75 1127.90 $\frac{5}{(5^+)}$ $<7~\mathrm{ns}$ <7 ns + 55,8 M1 xE2 90 10.92 162.72 $\frac{4^{-}}{3^{-}}$ <7 ns 106.92 0.0 ¥

⁹⁰₃₇Rb₅₃