	Histo	History						
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020					

Parent: ⁹⁰Mo: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=5.56 h 9$; $Q(\varepsilon)=2489 3$; $\%\varepsilon+\%\beta^+$ decay=100.0 1968Co05: ⁹³Nb(p,4n), E=50-55 MeV, chemical separation. Measured: γ singles and $\gamma\gamma$ coin with Ge(Li) and NaI. 1966Pe10: measured: ce(t) and β^+ spectra. Others: 1955Ma31, 1965Co14, 1965Gr29, 1981KaZI, 1984Bu36. α : Additional information 1.

⁹⁰Nb Levels

The decay scheme has been established from $\gamma\gamma$ coin data (1968Co05) and excit in 90 Zr(p,n γ) (1972Yo03).

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	E(level)	J^{π}
0	8+	14.60 h 5	382.0 4	1+	6.19 ms 8	1344.1 5	1+
122.370 22	6+	63 µs 2	651.20 <i>21</i>	$4^{(+)}$		1769.1 5	1^{+}
124.7 4	4-	18.91 s 6	822.6 6			1844.8 6	(1^{+})
285.30 10	5+		827.4 4			2125.6 7	1^{+}
328.00 10	4 ⁽⁺⁾		854.32 23	2-		2309.0 7	3+

[†] From Adopted Levels.

ε, β^+ radiations

 ε branches are obtained from I(γ +ce) imbalance at each level.

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(180 3)	2309.0		2.1 6	4.51 13	2.1 6	εK=0.8492 5; εL=0.1223 4; εM+=0.02846 10
(363 3)	2125.6		4.1 5	4.87 6	4.1 5	εK=0.8619 1; εL=0.11231 8; εM+=0.02580 2
(644 3)	1844.8		1.69 24	5.77 7	1.69 24	εK=0.8668; εL=0.10841 3; εM+=0.024775 7
(720 3)	1769.1		8.0 8	5.20 5	8.0 8	εK=0.8675; εL=0.10790 2; εM+=0.024640 5
(1145 3)	1344.1		0.73 11	6.65 7	0.73 11	εK=0.8694; εL=0.1063; εM+=0.02422
(2107 3)	382.0	25 2	56 <i>3</i>	5.30 3	81 5	av Eβ=477.9 14; εK=0.6020 18; εL=0.07263 21; εM+=0.01652
						5

[†] Absolute intensity per 100 decays.

$\gamma(^{90}{\rm Nb})$

I γ normalization: Calculated from total γ +ce feeding to g.s. assuming no ε feeding to g.s. (0⁺ to 8⁺ transition). α (K)exp values given in comments are calculated from I γ (1968Co05) and Ice (1966Pe10) assuming α (K)(122.4 γ)=0.47 for an E2 transition.

E_{γ}^{\dagger}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α	$I_{(\gamma+ce)}^{(a)}$	Comments
(2.3 4)		124.7	4-	122.370	6+	[M2+E3]		3.3×10 ⁹ 89	8.2 8	$\begin{array}{l} (ce(M)/(\gamma+ce)=0.9 \ 11; \ ce(N)/(\gamma+ce)=0.10 \ 35; \\ ce(O)/(\gamma+ce)=4.E-6 \ 13 \\ \alpha(M)=3.0\times10^9 \ 81; \ \alpha(N)=3.3\times10^8 \ 86; \\ \alpha(O)=1.4\times10^4 \ 17 \end{array}$
										E_{γ} : From level-energy differences. For an attempt to measure the conversion electron energy see 1988GeZV.
42.70 4	2.8 3	328.00	4 ⁽⁺⁾	285.30	5+	M1+(E2)	<0.18	2.9 4		$I_{(\gamma+ce)}$: From intensity balance of 124.7 level. $\alpha(K)=2.46\ 22;\ \alpha(L)=0.38\ 11;\ \alpha(M)=0.067\ 20;$ $\alpha(N)=0.0095\ 26;\ \alpha(O)=0.00041\ 3$
122 270 22	92.2	122 270	6+	0	o+	E2		0.557		Mult.: α (K)exp=2.3 8, K/L=9.5 40 (1966Pe10). δ : From α (K)exp/ α (L)exp. α (K)=0.464.7: α (L)=0.0768.11:
122.570 22	83 3	122.570	0	0	0	E2		0.557		$\begin{array}{l} \alpha(\mathbf{K}) = 0.404 \ 7; \ \alpha(\mathbf{L}) = 0.0708 \ 17; \\ \alpha(\mathbf{M}) = 0.01365 \ 20; \ \alpha(\mathbf{N}) = 0.00187 \ 3; \\ \alpha(\mathbf{O}) = 6.63 \times 10^{-5} \ 10 \end{array}$
162.93 9	7.7 7	285.30	5+	122.370	6+	M1+E2	0.24 17	0.067 13		Mult.: K/L=6.03 18 (1966Pe10). α (K)=0.059 11; α (L)=0.0071 17;
										α (M)=0.0012 3; α (N)=0.00018 4; α (O)=9.8×10 ⁻⁶ 15
202 12 10	9 9 7	954 22	2-	(51.20	4(+)			0.026.4		Mult.: $a(K)exp=0.059$ 6.
203.13 10	0.27	834.32	2	031.20	4			0.050 4		Mult.: $M(K)exp=0.034$ 4. Mult.: $M1+E2$ with $\delta < 0.36$ is inconsistent with adopted $\Delta \pi$.
257.34 4	100 3	382.0	1+	124.7	4-	E3(+M4)	<0.12	0.182 12		$\alpha(\text{K})=0.149\ 10;\ \alpha(\text{L})=0.0269\ 19;$ $\alpha(\text{M})=0.0048\ 4;\ \alpha(\text{N})=0.00066\ 5;$ $\alpha(\text{O})=2\ 33\times10^{-5}\ 22$
										Mult.: $a(K)exp=0.150 \ 11$, K/L=5.51 16 (1966Pe10).
222.20.10	0.1.7	(51.00	4(+)	220.00	4(+)	N(1 - E2	0 ()	0.0100.15		δ: From α(K)exp and α(K)exp/α(L)exp.
323.20 18	8.17	651.20	4(+)	328.00	4(+)	M1+E2	0.6 3	0.0122 15		$\begin{array}{l} \alpha(\mathbf{K}) = 0.0107 \ 13; \ \alpha(\mathbf{L}) = 0.00126 \ 17; \\ \alpha(\mathbf{M}) = 0.00022 \ 3; \ \alpha(\mathbf{N}) = 3.2 \times 10^{-5} \ 5; \\ \alpha(\mathbf{O}) = 1.76 \times 10^{-6} \ 18 \end{array}$
										Mult.: a(K)exp=0.0106 <i>12</i> .
^x 421 0 3	0 32 10									o: FIOII $\alpha(K)$ exp. a(K)exp=0.0038.14
425.1 5	0.46 10	1769.1	1^{+}	1344.1	1^{+}					utionp 0.0000 11.
440.5 [‡] 6	1.2 3	822.6		382.0	1^{+}					

From ENSDF

90 Mo ε decay 1968Co05,1966Pe10 (continued)

$\gamma(^{90}\text{Nb})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α	Comments
445.37 21	7.7 8	827.4		382.0	1^{+}			Mult.: a(K)exp=0.0050 7.
472.2 3	1.83 19	854.32	2^{-}	382.0	1^{+}			Mult.: a(K)exp=0.0029 4.
489.8 <i>4</i>	0.94 13	1344.1	1^{+}	854.32	2^{-}			Mult.: a(K)exp=0.0038 7.
^x 517.7 [‡] 7	0.20 13							
941.5 4	7.1 8	1769.1	1^{+}	827.4				Mult.: a(K)exp=0.00071 10.
946.4 [‡] 8	0.9 <i>3</i>	1769.1	1^{+}	822.6				
^x 987.3 [‡] 10	0.18 7							
990.2 6	1.31 13	1844.8	(1^{+})	854.32	2^{-}			Mult.: a(K)exp=0.00070 12.
1271.3 6	5.3 5	2125.6	1^{+}	854.32	2^{-}			Mult.: a(K)exp=0.00050 6.
1387.4 5	2.4 3	1769.1	1+	382.0	1+	M1+E2	4.06×10 ⁻⁴ 7	$\alpha(K)=0.000320$ 9; $\alpha(L)=3.53\times10^{-5}$ 9; $\alpha(M)=6.21\times10^{-6}$ 15; $\alpha(N)=9.11\times10^{-7}$ 23; $\alpha(O)=5.34\times10^{-8}$ 17
								Mult.: a(K)exp=0.00044 6.
^x 1446 [‡] 2	0.06 3							
1454.6 7	2.4 7	2309.0	3+	854.32	2^{-}			Mult.: a(K)exp=0.00036 12.
1463.5 9	0.9 <i>3</i>	1844.8	(1^{+})	382.0	1^{+}			Mult.: a(K)exp=0.00048 22.
1481.6 14	0.3 3	2309.0	3+	827.4				

ω

[†] From 1966Pe10 (from ce spectra), except as noted. [‡] From 1968Co05. [#] From conversion coefficient data above and adopted $J^{\pi'}$ s. E3/M2 and MR=0.10 for the other multipolarities. E3/M2 and MR=0.10 for the other multipolarities.

[@] For absolute intensity per 100 decays, multiply by 0.774 29.

 $x \gamma$ ray not placed in level scheme.

