Adopted Levels, Gammas

	History							
	Туре	Author	Citation	Literature Cutoff Date				
	Full Evaluation	S. K. Basu, E. A. Mccutchan	NDS 165, 1 (2020)	1-Mar-2020				
$Q(\beta^{-}) = -2489 \ 3; \ S(n) = S(2n) = 22630 \ 60, \ S(2P)$	10108 24; S(p)=50)=12940 4 (2017W	$075 5; Q(\alpha) = -5803 15$ 2017 Val0).	Wa10					

 α : Additional information 1.

⁹⁰Nb Levels

For influence of the chemical and physical environment on $T_{1/2}(125)$, see 1965Co12, 1969Ol01, 1970Ol04, 1971Sm07, 1977Do07, 1978Me03.

For activities not definitely assigned to 90 Mo, see 1965Mc03 (80 μ s), 1967Iv04 (20.1 ms), 1975DeYP (53 ms, 10 ms), 1977DeZT and 1977DeXV (85 ms 6). No trace of a 50-100 ms component in the decay of the 382 level was found in a search with a mini-orange spectrometer (1982Hu01).

				Cross Reference (XREF) Flags
		A B C D	⁹⁰ Mo ε decay 90 Zr(p,nγ) 90 Zr(³ He,t) 92 Mo(d,α)	$ \begin{array}{lll} {\tt E} & {}^{90}{\tt Zr}({\rm p},{\rm n}) & {\tt I} & {}^{76}{\tt Ge}({}^{19}{\tt F},{\tt 5n}\gamma) \\ {\tt F} & {}^{89}{\tt Y}(\alpha,{\tt 3n}\gamma), {}^{90}{\tt Zr}({}^{3}{\tt He},{\rm p2n}\gamma) & {\tt J} & {}^{9}{\tt Be}({}^{124}{\tt Xe},{\tt X}\gamma) \\ {\tt G} & {}^{90}{\tt Zr}({}^{12}{\tt C},{}^{12}{\tt B}) \\ {\tt H} & {}^{63}{\tt Cu}({}^{31}{\tt P},{\tt 3pn}\gamma) \end{array} $
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	8+‡	14.60 h 5	ABCD FGHIJ	%ε+%β ⁺ =100 Q=+0.01 4; μ=+4.957 5 J ^π : J from atomic and molecular beam measurements (1975Ru06,1978Ru04); π from μ comparison with shell model predictions. T _{1/2} : from β(t) with chemically separated source (1968Pe01). Others in good agreement: 1954On06, 1957Sh32. μ: from weighted average of +4.961 4 (from NMR on oriented nuclei, 1981Ha24) and +4.952 4 (from colinear laser spectroscopy (CLS), 2009Ch25); for a latest compilation see 2014StZZ. Q: from colinear laser spectroscopy (CLS) (2009Ch25,2016St14). Other: +0.046 7 (from multiple adiabatic passage NMR on Oriented Nuclei (MAPON), 1998Se01). $\Delta < r^2 > (^{91g}Nb, ^{90g}Nb)=+0.011$ fm ² <i>l</i> (2009Ch25).
122.370 22	6+‡	63 µs 2	ABC FH	%IT=100 μ =+3.720 24 T _{1/2} : from γ (t) (1978Ba18). Others: 61 μ s 4 (1971Ho27), 73 μ s (1967Iv04). μ : from time differential perturbed angular distribution (TDPAD); corrected for Knight shift and diamagnetism (1978Ha52, 2014STZZ). J ^{π} : E2 122.4 γ to 8 ⁺ , member of ((π 1g _{9/2})(ν 1g _{9/2}) ₁) multiplet.
124.67 25	4-#	18.91 s 6	AB D F	%IT=100 Q=-0.26 4; μ=-0.018 9 J ^π : from L(d,α)=3. T _{1/2} : weighted average of 18.97 s 4 (2011Ki45), 18.82 s 9 (1969Ge03), 18.84 s 9 (1971Sm07), and 18.76 s 10 (1974Co33), γ(t) and ce(t) for the 122-keV transition. Decay of level 124.67 has not been observed. Other: 1978Me03 (18.87 s 2, statistical uncertainty only). μ: From colinear laser spectroscopy (CLS) (2009Ch25, 2014StZZ). Q: From colinear laser spectroscopy (CLS) (2009Ch25, 2016St14). $\Delta < r^2 > (^{91g}Nb, ^{90m}Nb) = +0.042 \text{ fm}^2 2 (2009Ch25).$

Continued on next page (footnotes at end of table)

⁹⁰Nb Levels (continued)

J^{π}	T _{1/2}	XREF	Comments
7+‡	<1 µs	BCD F	J^{π} : from L(d, α)=6.
			T _{1/2} : From $\gamma\gamma$ (t) in ⁸⁹ Y(α ,3n γ).
5+‡		ABCD F H	J^{π} : M1+E2 162.9 γ to 6 ⁺ .
$4^{(+)}$		ABC F H	J^{π} : M1 42.7 γ to 5 ⁺ .
5 ^{-#}		BC F	J^{π} : from D 237.7 γ to 4 ⁻ .
1+‡	6.19 ms 8	AB D	 %IT=100 T_{1/2}: From γ(t) with Ge(Li) (1974Ha50). Others: 6.3 ms 2 (1974Co33 ce(t)), 6.3 ms 2 (1977DeXV), 6.44 ms (1967Iv04). J^π: from log <i>ft</i>=5.3 in ε decay from 0⁺ parent, E3 257.3γ to 4⁻.
4 ⁽⁺⁾ ‡		ABCD F H	J^{π} : M1+E2 323.2 γ to 2 ⁺ .
(9)+‡		CD F HIJ	J^{π} : M1 812.9 γ to 8 ⁺ .
		AB AB BCD F	
2-		ABCD F H	J^{π} : E1 203.1 γ to 3 ⁺ , 472.2 γ to 1 ⁺ .
(3,4,5)		CDE G B D B D	E(level), J^{π} : from (³ He,t). J^{π} assignment is tentative.
		D	E(level): from (\mathbf{d}, α) .
		D BC	E(level): from (d,a).
(3.4.5)		CD	E(level).J ^{π} : from (³ He.t). J ^{π} assignment is tentative.
1+		AB D H	J^{π} : 489.8 γ to 2 ⁻ , feeding from 0 ⁺ parent in ε decay.
(3 ⁺)		BCD B BCD B	J^{π} : from γ 's to 1 ⁺ , 4 ⁺ and 4 ⁻ .
2-,3-,4-		CD	J ^{π} : From L=3 transfer in ⁹² Mo(d, α) reaction (1974Co37). E(level): from (d, α).
4-,5-,6-		CD	J ^{π} : From L=5 transfer in ⁹² Mo(d, α) reaction (1974Co37). E(level): from (d, α).
		B BCD	
1		CD	E(level): from $({}^{3}\text{He,t})$.
1+		ABCD H	J^{n} : M1+E2 1387.4 γ to 1 ⁺ , log <i>ft</i> =5.2 from 0 ⁺ parent.
(9 ⁻)		F HIJ BC	J^{π} : D 996.2 γ to (9) ⁺ .
(1^{+})		AR H	I^{π} : D 990 2 γ to 2 ⁻
(11 ⁻)	463 ns <i>13</i>	CD F H F HIJ	E(level): from (d,α) . $\mu = +8.78 \ 3$
			 T_{1/2}: weighted average of 477 ns <i>10</i> from (³¹P,3pnγ), 440 ns <i>20</i> from (α,3nγ) and 415 ns 67 from (¹²⁴Xe,Xγ). μ: from time differential perturbed angular distribution (TDPAD); corrected for Knight shift and diamagnetism (1978Ha52, 2014STZZ). J^π: (E2) 71.1γ to (9⁻).
(3,4,5) (10 ⁺)		BCD FH BC	J^{π} : from 1847 γ to 4 ⁻ . J^{π} : D 1172.7 γ to (9) ⁺ .
		B D	E(level): from $({}^{3}\text{He},t)$.
(10^{+})		Ст	E(level): Irom (⁻ He,I). I^{π} , O 2063 3y to 8 ⁺
(10)		C	E(level): from $({}^{3}\text{He,t})$.
	$\frac{J^{\pi}}{7^{+\ddagger}}$ $5^{+\ddagger}_{4(+)\ddagger}$ $5^{-\#}_{1^{+\ddagger}}$ $4^{(+)\ddagger}_{(9)^{+\ddagger}}$ $2^{-}_{(3,4,5)}$ $(3,4,5)_{1^{+}}$ (3^{+}) $2^{-},3^{-},4^{-}$ $4^{-},5^{-},6^{-}$ $1^{+}_{(9^{-})}$ (1^{+}) (11^{-}) $(3,4,5)_{(10^{+})}$ (10^{+})	$ \frac{J^{\pi}}{7^{+\frac{1}{2}}} = \frac{T_{1/2}}{<1 \mu s} $ $ \frac{5^{+\frac{1}{2}}}{5^{-\frac{1}{2}}} = 6.19 \mathrm{ms} 8 $ $ \frac{4^{(+)\frac{1}{2}}}{(9)^{+\frac{1}{2}}} = 6.19 \mathrm{ms} 8 $ $ \frac{4^{(+)\frac{1}{2}}}{(9)^{+\frac{1}{2}}} = 72^{-3}(3,4,5) $ $ \frac{(3,4,5)}{1^{+}(3^{+})} = 72^{-3}(3,4,5) $ $ \frac{1^{+}}{(9^{-})} = 72^{-3}(3,4,5) $ $ \frac{(3,4,5)}{(10^{+})} = 72^{-3}(3,4,5) $ $ \frac{(3,4,5)}{(10^{+})} = 72^{-3}(3,4,5) $ $ \frac{(3,4,5)}{(10^{+})} = 72^{-3}(3,4,5) $ $ \frac{(10^{+})}{(10^{+})} = 72^{-3}(3,4,5) $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Continued on next page (footnotes at end of table)

⁹⁰Nb Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2104 10		C	E(level): from (³ He.t).
2125.6 7	1^{+}	ABC H	J^{π} : M1 1271.3 γ to 2 ⁻ .
2168 7	(3,4,5)	CD	J^{π} : Tentative assignment from (³ He,t).
2180.6 5	(12^{-})	Н	J^{π} : M1 300.4 γ to (11 ⁻).
2309.0 7	3+	A GH	J^{π} : E1 1454.6 γ to 2 ⁻ .
2344 7		CD H	E(level): from (³ He,t).
2370 15		CD	E(level): from (³ He.t).
2430 15		C	E(level); from (³ He.t).
2479 15		D	E(level): from (³ He t).
2487.3 3	(12^{-})	F HI	J^{π} : M1 607.1 γ to (11 ⁻).
2530 15	. ,	С	E(level): from (³ He.t).
2560 15		С	E(level): from (³ He.t).
2580 15		C	E(level); from (³ He.t).
2650 15		C	E(level): from (³ He t).
2680 15		c	E(level); from (³ He t).
2690.0.3	(11^{+})	I	J^{π} : O 1876.6 γ to (9 ⁺).
2710 15	()	c	E(level): from (³ He.t).
2730 15		C G	E(level): from (³ He t).
2780 15		C	E(level); from (³ He t)
2793.2 6		Н	
2813.6 5	(13^{-})	Н	J^{π} : 633.2 γ to (12 ⁻), 933.3 γ to (11 ⁻).
2818.8 4	(12^{+})	I	J^{π} : Q 7555 γ to (10 ⁺).
2850 15		С	E(level): from (³ He,t).
2880 15		С	E(level): from (³ He,t).
2950 15		С	E(level): from (³ He,t).
2980 15		СЕ	E(level): from (³ He,t).
3020 15		СН	E(level): from (³ He.t).
3071.8 6	(13^{-})	FΗ	J^{π} : D 584.5 γ to (12 ⁻).
3074.7 6	(13 ⁻)	I	J^{π} : D 587.1 γ to (12 ⁻).
3160 15		С	E(level): from (³ He,t).
3314.8 5	(13^{+})	I	J^{π} : D 496.0 γ to (12 ⁺).
3497.0 5	(13^{+})	I	J^{π} : D 678.2 γ to (12 ⁺).
3654.3 5	13-	Н	J^{π} : E2 1773.9 γ to 11 ⁻ .
3672.2 7	(14^{-})	I	J^{π} : D 597.5 γ to (13 ⁻).
3975.76	(14^{+})	I	J^{n} : D 660.9 γ to (13 ⁺).
4068.0 6	(15^{+})	1	J^{*} : (Q) $5/1.0\gamma$ to (13 ⁺).
4330.6 6	(15^{+})	н	J^{*} : D 6/6.4 γ to 13.
4422.1 /	(13)	1	$J : D 440.4\gamma to (14).$
5037.6	0. +	C	$E(\text{level}), J^{n}$: from (³ He,t).
5051.2.0	1 = (-)	H	
55765 S	$13^{(1)}$	н	$J^{*}: Q = 1903.4\gamma$ to 13.
576267	(13) (17^+)	L T	J^{π} . D 1904.57 to (14). I^{π} : D 1604 for to (15 ⁺)
6147.1.8	(17) (18^+)	T T	$J : Q = 1094.07 \text{ to } (15^{\circ}).$ $I^{\pi}: D = 384.527 \text{ to } (17^{+}).$
6155 5 6	(10^{-})	ц Ц	$I^{\pi} \cdot M_{1} = 507.5 \times 10^{-1} (17^{-1}).$
6229.9.6	10	Н	J. 111 J. 1. 1 J
6684.6 8		Ĩ	
6742.3 6	$17^{(+)}$	н	J^{π} : E1 586.8 γ to $16^{(-)}$.
7024.2.7	$18^{(+)}$	н	J^{π} : M1 281.9 γ to 17 ⁽⁺⁾ .
7351.0 8	(17^{-})	ĩ	J^{π} : Q 1774.4 γ to (15 ⁻).
7768.1 7	19(+)	Н	J^{π} : E2 1025.7 γ to 17 ⁽⁺⁾ .
8094.8 9	(18-)	I	J^{π} : D 743.8 γ to (17 ⁻).
8376.3 9		I	

Continued on next page (footnotes at end of table)

90Nb Levels (continued)

[†] From least-squares fit to $E\gamma$, by evaluators. [‡] Probable configuration=((π 1g_{9/2})(ν 1g_{9/2})). [#] Probable configuration=((π 2p_{1/2})(ν 1g_{9/2})).

Adopted Levels, Gammas (continued)									
							$\gamma(90)$	⁹ Nb)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ	α	Comments
122.370	6+	122.370 [‡] 22	100 [‡]	0	8+	E2		0.557	$\alpha(K)=0.464\ 7;\ \alpha(L)=0.0768\ 11;\ \alpha(M)=0.01365\ 20;\ \alpha(N)=0.00187\ 3;\ \alpha(O)=6.63\times10^{-5}\ 10$ B(E2)(W.u.)=0.00878\ 28
124.67	4-	(2.3 4)		122.370	6+	[M2,E3]		3.×10 ⁹ 9	Mult., δ : from ce measurements in ⁹⁰ Mo ε decay. α (M)=3.E9 8; α (N)=3.E8 9; α (O)=1.4×10 ⁴ 17 E _{γ} : from level energy difference.
171.10	7+	171.1 ^{&} 1	100 <mark>&</mark>	0	8+	D			Mult.: from $(\alpha, 3n\gamma)$.
285.30	5+	162.93 [‡] 9	100‡	122.370	6+	M1+E2	0.24 17	0.067 13	$\alpha(K)=0.059 \ 11; \ \alpha(L)=0.0071 \ 17; \ \alpha(M)=0.0012 \ 3; \ \alpha(N)=0.00018 \ 4; \ \alpha(O)=9.8 \times 10^{-6} \ 15$ Mult. δ : from ce measurements in ⁹⁰ Mo ε decay.
328.00	4 ⁽⁺⁾	42.70 [‡] 4	100‡	285.30	5+	M1+(E2)	<0.18	2.9 4	$\alpha(K)=2.46\ 22;\ \alpha(L)=0.38\ 11;\ \alpha(M)=0.067\ 20;\ \alpha(N)=0.009\ 3;\ \alpha(O)=0.00041\ 3$ Mult δ : from ce measurements in ⁹⁰ Mo ε decay.
362.4	5-	237.7 <mark>&</mark> 1	100 <mark>&</mark>	124.67	4-	D			Mult.: from $(\alpha, 3n\gamma)$.
382.01	1+	257.34 [‡] <i>4</i>	100 [‡] 3	124.67	4-	E3(+M4)	<0.12	0.182 12	$\alpha(K)=0.149$ 10; $\alpha(L)=0.0269$ 19; $\alpha(M)=0.0048$ 4; $\alpha(N)=0.00066$ 5; $\alpha(O)=2.33\times10^{-5}$ 22 B(E3)(W.u.)=4.60 +13-16
651.19	4 ⁽⁺⁾	323.20 [‡] 18	100‡	328.00	4 ⁽⁺⁾	M1+E2	0.6 3	0.0122 15	Mult., δ : from ce measurements in ⁹⁰ Mo ε decay. $\alpha(K)=0.0107 \ 13; \ \alpha(L)=0.00126 \ 17; \ \alpha(M)=0.00022 \ 3; \ \alpha(N)=3.2\times10^{-5} \ 5; \ \alpha(O)=1.76\times10^{-6} \ 18$
812.90	(9)+	812.9 ^{&} 1	100 ^{&}	0	8+	M1		1.16×10 ⁻³	$\alpha(K)=0.001019 \ 15; \ \alpha(L)=0.0001131 \ 16; \alpha(M)=1.99\times10^{-5} \ 3; \ \alpha(N)=2.92\times10^{-6} \ 4 \alpha(O)=1.716\times10^{-7} \ 24 Mult : from \gamma\gamma(\theta) and \gamma(lin pol) in 63Cu(31P 3pny).$
822.6		$440.5^{\ddagger}6$	100^{\ddagger}	382.01	1+				
827.4		445.37 [‡] 21	100 [‡]	382.01	1^{+}				
847.7		485.4 [#] 3		362.4	5-				
		722 [#] 1		124.67	4-				
854.32	2-	203.13 [‡] <i>10</i>	100 [‡] 9	651.19	4 ⁽⁺⁾	E1		0.01535	α(K)=0.01352 19; α(L)=0.001520 22; α(M)=0.000266 4; α(N)=3.86×10-5 6; α(O)=2.12×10-6 3 Mult.: from γγ(θ) and γ(lin pol) in ⁶³ Cu(³¹ P,3pnγ). Inconsistent with ce measurements in ⁹⁰ Mo ε decay which give M1+E2 with δ<0.36.
		472.2 [‡] 3	22 [‡] 3	382.01	1^{+}			1.59×10^{-3}	
1128.2		477.1 [#] 3		651.19	4 ⁽⁺⁾				
		1003 [#] 1		124.67	4-				

S

L

					Adopted	l Levels, Gamm	as (continued)
						γ (⁹⁰ Nb) (contin	nued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α	Comments
1195.2		1071 [#] /	100	124.67 4-			
1279.7		1155# 1	100#	124.67 4-			
1344.1	1^{+}	489.8 [#] 4	100#	854.32 2-		1.46×10^{-3}	
1362.7	(3^{+})	711 [#] 1		651.19 4 ⁽⁺⁾			
		981 [#] 1		382.01 1+			
		1035 [#] 1		328.00 4 ⁽⁺⁾			
		1238 [#] 1		124.67 4-			
1372.1		517.7 [#] 3		854.32 2-			
		1248 [#] 1		124.67 4-			
1414.2		763 [#] 1	100 [#]	651.19 4 ⁽⁺⁾			
1433.3		1105 [#] 1		328.00 4 ⁽⁺⁾			
		1309 [#] 1		124.67 4-			
1630.7		1506 [#] 1	100 [#]	124.67 4-			
1646.7		1522 [#] 1	100#	124.67 4-			
1769.1	1^{+}	425.1 [‡] 3	6.5 [‡] 14	1344.1 1+			
		941.5 [‡] 4	100 [‡] <i>12</i>	827.4			
		946.4 [‡] 8	12 [‡] 4	822.6			
		1387.4 [‡] 5	33 [‡] 4	382.01 1+	M1+E2	4.06×10 ⁻⁴ 7	$\alpha(K)=0.000320 \ 9; \ \alpha(L)=3.53\times10^{-5} \ 9; \ \alpha(M)=6.21\times10^{-6} \ 15; \ \alpha(N)=9.11\times10^{-7} \ 23; \ \alpha(O)=5.34\times10^{-8} \ 17$ Mult : from ⁹⁰ Mo ε decay.
1809.11	(9 ⁻)	996.2 2	100	812.90 (9) ⁺	D	3.11×10^{-4}	$\alpha(K)=0.000275 \ 4; \ \alpha(L)=3.01\times10^{-5} \ 5; \ \alpha(M)=5.29\times10^{-6} \ 8; \ \alpha(N)=7.76\times10^{-7} \ 11; \ \alpha(O)=4.52\times10^{-8} \ 7$
1815.7		1691 [#] 1	100 [#]	124.67 4-			
1835.7		641 [#] 1	#	1195.2			
		1184 ^{# 1}	#	651.19 4 ⁽⁺⁾			
1844.8	(1 ⁺)	990.2 [‡] 6	100 [‡] <i>10</i>	854.32 2-	D	3.15×10 ⁻⁴	α (K)=0.000278 4; α (L)=3.05×10 ⁻⁵ 5; α (M)=5.35×10 ⁻⁶ 8; α (N)=7.85×10 ⁻⁷ 11; α (O)=4.58×10 ⁻⁸ 7 Mult.: from DCO ratio data of (³¹ P,3pn γ).
		1463.5 [‡] 9	69 [‡] 23	382.01 1+			
1880.21	(11 ⁻)	71.1 ^{&} 2	6.7 ^{&} 19	1809.11 (9 ⁻)	(E2)	3.97 7	α (K)=3.07 6; α (L)=0.746 14; α (M)=0.1338 25; α (N)=0.0177 4; α (O)=0.000406 7 B(E2)(W.u.)=1.41 +29-33
		1067.3 ^{&} 2	100 ^{&} 4	812.90 (9)+	(M2)	1.48×10^{-3}	α (K)=0.001306 <i>19</i> ; α (L)=0.0001478 <i>21</i> ; α (M)=2.61×10 ⁻⁵ <i>4</i> ; α (N)=3.82×10 ⁻⁶ <i>6</i> ; α (O)=2.23×10 ⁻⁷ <i>4</i> B(M2)(W,u,)=0.00181 + <i>15</i> - <i>13</i>
1971.7	(3,4,5)	1847 [#] 1	100 [#]	124.67 4-			

L

$\gamma(^{90}\text{Nb})$	(continued)
/(1,0)	(commaca)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [†]	α	Comments
1985.61	(10 ⁺)	1172.7 ^{&} 2	100	812.90	(9)+	D	5.28×10 ⁻⁴	α (K)=0.000463 7; α (L)=5.10×10 ⁻⁵ 8; α (M)=8.98×10 ⁻⁶ 13; α (N)=1.318×10 ⁻⁶ 19; α (O)=7.77×10 ⁻⁸ 11 Mult.: from (α .3n γ).
1990.4		1340 [#] 1		651.19	4(+)			
		1865 [#] 1		124.67	4-			
2063.32	(10 ⁺)	1249.9 <i>3</i>	16 7	812.90	(9)+	D	4.72×10^{-4}	α (K)=0.000406 6; α (L)=4.46×10 ⁻⁵ 7; α (M)=7.85×10 ⁻⁶ 11; α (N)=1.153×10 ⁻⁶ 17; α (O)=6.80×10 ⁻⁸ 10
		2063.3 3	100 14	0	8+	Q	5.02×10^{-4}	α (K)=0.0001460 21; α (L)=1.597×10 ⁻⁵ 23; α (M)=2.80×10 ⁻⁶ 4; α (N)=4.12×10 ⁻⁷ 6; α (O)=2.42×10 ⁻⁸ 4
2125.6	1+	1271.3 [‡] 6	100 [‡]	854.32	2-	M1	2.86×10 ⁻⁴	$\alpha(K)=0.0001759\ 25;\ \alpha(L)=1.92\times10^{-5}\ 3;\ \alpha(M)=3.37\times10^{-6}\ 5;\ \alpha(N)=4.94\times10^{-7}\ 7;\ \alpha(O)=2.90\times10^{-8}\ 4$ Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln \text{ pol})\ \ln\ ^{63}\text{Cu}(^{31}\text{P},3\text{pn}\gamma).$
2180.6	(12-)	300.4 [‡]	100 [‡]	1880.21	(11-)	M1	0.01218	$\alpha(\mathbf{K})=0.01071\ 15;\ \alpha(\mathbf{L})=0.001220\ 17;\ \alpha(\mathbf{M})=0.000215\ 3;\ \alpha(\mathbf{N})=3.15\times10^{-5}\ 5;\ \alpha(\mathbf{O})=1.82\times10^{-6}\ 3$
2309.0	3+	1454.6 [‡] 7	100 [‡] <i>30</i>	854.32	2-	E1	3.66×10 ⁻⁴	$\alpha(K)=0.0001396\ 20;\ \alpha(L)=1.518\times10^{-5}\ 22;\ \alpha(M)=2.67\times10^{-6}\ 4;\ \alpha(N)=3.91\times10^{-7}\ 6;\ \alpha(O)=2.30\times10^{-8}\ 4$ Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P.3pn}\gamma)$.
		1481.6 [‡] <i>14</i>	13 [‡] <i>13</i>	827.4				
2487.3	(12 ⁻)	607.1 ^{&} 2	100 ^{&}	1880.21	(11 ⁻)	M1	0.00223	$\alpha(K)=0.00197 \ 3; \ \alpha(L)=0.000220 \ 3; \ \alpha(M)=3.88\times10^{-5} \ 6; \ \alpha(N)=5.69\times10^{-6} \ 8; \ \alpha(O)=3.32\times10^{-7} \ 5$
2690.0	(11+)	626.7 3	53 21	2063.32	(10 ⁺)	Q	0.00234	Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln pol)$ in $Cu(^{-1}P, spn\gamma)$. $\alpha(K)=0.00205 \ 3; \ \alpha(L)=0.000237 \ 4; \ \alpha(M)=4.18\times 10^{-5} \ 6; \ \alpha(N)=6.07\times 10^{-6} \ 9; \ \alpha(O)=3.36\times 10^{-7} \ 5$
		1876.6 <i>3</i>	1.0×10 ² 3	812.90	(9)+	Q	4.44×10^{-4}	$\alpha(K)=0.0001739\ 25;\ \alpha(L)=1.91\times10^{-5}\ 3;\ \alpha(M)=3.35\times10^{-6}\ 5;\ \alpha(N)=4.91\times10^{-7}\ 7;\ \alpha(O)=2.89\times10^{-8}\ 4$
2793.2		807.7 ^{@a}	100@	1985.61	(10^{+})			
2813.6	(13 ⁻)	633.2 [@]	91 [@] 18	2180.6	(12 ⁻)		0.00203	
		933.3 [@]	100 [@] 18	1880.21	(11^{-})		8.46×10^{-4}	
2818.8	(12 ⁺)	755.5 3	100	2063.32	(10 ⁺)	Q	1.42×10^{-3}	α (K)=0.001250 <i>18</i> ; α (L)=0.0001428 <i>20</i> ; α (M)=2.51×10 ⁻⁵ <i>4</i> ; α (N)=3.66×10 ⁻⁶ <i>6</i> ; α (O)=2.06×10 ⁻⁷ <i>3</i>
3071.8	(13-)	584.5 ^{&} 5	100 &	2487.3	(12 ⁻)	D	0.00244	$\alpha(K)=0.00215 \ 3; \ \alpha(L)=0.000240 \ 4; \ \alpha(M)=4.24\times10^{-5} \ 6; \ \alpha(N)=6.21\times10^{-6} \ 9; \ \alpha(O)=3.63\times10^{-7} \ 6$ Mult.: from $\gamma\gamma(\theta)$ in ⁶³ Cu(³¹ P.3pn γ).
3074.7	(13-)	587.1 <i>3</i>	100	2487.3	(12 ⁻)	D	0.00241	$\alpha(K)=0.00213 \ 3; \ \alpha(L)=0.000238 \ 4; \ \alpha(M)=4.19\times10^{-5} \ 6; \ \alpha(N)=6.15\times10^{-6} \ 9; \ \alpha(O)=3.59\times10^{-7} \ 5$
3314.8	(13 ⁺)	496.0 <i>3</i>	100	2818.8	(12 ⁺)	D	0.00358	$\alpha(K)=0.00316\ 5;\ \alpha(L)=0.000355\ 5;\ \alpha(M)=6.25\times10^{-5}\ 9;\ \alpha(N)=9.16\times10^{-6}\ 13;\ \alpha(O)=5.34\times10^{-7}\ 8$

7

From ENSDF

γ (⁹⁰Nb) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α	Comments
3497.0	(13+)	678.2 3	100	2818.8	(12 ⁺)	D	1.73×10^{-3}	α (K)=0.001529 22; α (L)=0.0001704 24; α (M)=3.00×10 ⁻⁵ 5; α (N)=4.40×10 ⁻⁶ 7; α (O)=2.58×10 ⁻⁷ 4
3654.3	13-	1773.9 [@]	100 [@]	1880.21	(11 ⁻)	E2	4.18×10 ⁻⁴	$\alpha(K)=0.000193 \ 3; \ \alpha(L)=2.12\times10^{-5} \ 3; \ \alpha(M)=3.73\times10^{-6} \ 6; \ \alpha(N)=5.47\times10^{-7} \ 8; \ \alpha(O)=3.21\times10^{-8} \ 5$
3672.2	(14 ⁻)	597.5 <i>3</i>	100	3074.7	(13 ⁻)	D	0.00232	Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$. $\alpha(\text{K})=0.00204$ 3; $\alpha(\text{L})=0.000228$ 4; $\alpha(\text{M})=4.02\times10^{-5}$ 6; $\alpha(\text{N})=5.90\times10^{-6}$
3975.7	(14+)	660.9 <i>3</i>	100	3314.8	(13+)	D	0.00184	9; $\alpha(0)=3.43\times10^{-5}$ 5 $\alpha(K)=0.001622\ 23;\ \alpha(L)=0.000181\ 3;\ \alpha(M)=3.18\times10^{-5}\ 5;$ $\alpha(N)=4\ 67\times10^{-6}\ 7;\ \alpha(O)=2\ 74\times10^{-7}\ 4$
4068.0	(15+)	571.0 <i>3</i>	100	3497.0	(13+)	(Q)	0.00303	$\alpha(K) = 0.00266 \ 4; \ \alpha(L) = 0.000310 \ 5; \ \alpha(M) = 5.47 \times 10^{-5} \ 8; \ \alpha(N) = 7.93 \times 10^{-6} \ 12; \ \alpha(O) = 4.34 \times 10^{-7} \ 7$
4330.6	$14^{(-)}$	676.4 [@]	100 [@]	3654.3	13-	D		Mult.: from $\gamma\gamma(\theta)$ in ⁶³ Cu(³¹ P.3pn γ).
4422.1	(15 ⁺)	446.4 3	100	3975.7	(14 ⁺)	D	0.00460	$\alpha(\text{K})=0.00405\ 6;\ \alpha(\text{L})=0.000457\ 7;\ \alpha(\text{M})=8.05\times10^{-5}\ 12;$ $\alpha(\text{N})=1.180\times10^{-5}\ 17;\ \alpha(\text{O})=6.86\times10^{-7}\ 10$
5051.2		720.6 ^{@a}	$100^{@}$	4330.6	$14^{(-)}$			
5557.8	15 ⁽⁻⁾	1903.4 [@]	100 [@] 18	3654.3	13-	Q	4.52×10 ⁻⁴	$\alpha(K)=0.0001694\ 24;\ \alpha(L)=1.86\times10^{-5}\ 3;\ \alpha(M)=3.26\times10^{-6}\ 5;\ \alpha(N)=4.78\times10^{-7}\ 7;\ \alpha(O)=2.81\times10^{-8}\ 4$
		2744.2 [@]	47 [@] 9	2813.6	(13 ⁻)	Q	7.61×10 ⁻⁴	$\alpha(K) = 8.85 \times 10^{-5} \ 13; \ \alpha(L) = 9.62 \times 10^{-6} \ 14; \ \alpha(M) = 1.690 \times 10^{-6} \ 24; \\ \alpha(N) = 2.48 \times 10^{-7} \ 4; \ \alpha(O) = 1.468 \times 10^{-8} \ 21$
5576.5	(15 ⁻)	1904.3 <i>3</i>	100	3672.2	(14 ⁻)	D	4.27×10^{-4}	Mult.: from $\gamma\gamma(\theta)$ in ⁶³ Cu(³¹ P,3pn γ). $\alpha(K)=0.0001750\ 25;\ \alpha(L)=1.91\times10^{-5}\ 3;\ \alpha(M)=3.36\times10^{-6}\ 5;$ $\alpha(N)=4.94\times10^{-7}\ 7;\ \alpha(O)=2.92\times10^{-8}\ 4$
5762.6	(17 ⁺)	1694.6 <i>3</i>	100	4068.0	(15 ⁺)	Q	4.03×10^{-4}	$\alpha(\mathbf{N}) = 4.94 \times 10^{-7}, \ \alpha(\mathbf{O}) = 2.32 \times 10^{-4} 4^{-4}, \ \alpha(\mathbf{M}) = 4.07 \times 10^{-6} 6; \ \alpha(\mathbf{N}) = 5.97 \times 10^{-7} 9; \ \alpha(\mathbf{O}) = 3.50 \times 10^{-8} 5^{-5}$
6147.1	(18 ⁺)	384.5 <i>3</i>	100	5762.6	(17 ⁺)	D	0.00661	$\alpha(\mathbf{K}) = 0.00581 \ 9; \ \alpha(\mathbf{L}) = 0.000658 \ 10; \ \alpha(\mathbf{M}) = 0.0001159 \ 17; \ \alpha(\mathbf{N}) = 1.699 \times 10^{-5} \ 24$
6155.5	16 ⁽⁻⁾	597.7 [@]		5557.8	15 ⁽⁻⁾	M1	0.00232	$\alpha(O) = 9.80 \times 10^{-7} 14^{-7}$ $\alpha(K) = 0.00204 \ 3; \ \alpha(L) = 0.000228 \ 4; \ \alpha(M) = 4.02 \times 10^{-5} \ 6; \ \alpha(N) = 5.90 \times 10^{-6}$ $9; \ \alpha(O) = 3.45 \times 10^{-7} \ 5$
								Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$.
		1824.9 [@]		4330.6	$14^{(-)}$			
6229.9		672.1 ^{@a}	$100^{@}$	5557.8	$15^{(-)}$			
6684.6		537.5 ^a 3	100	6147.1	(18 ⁺)			
6742.3	17 ⁽⁺⁾	586.8 [@]	100 [@]	6155.5	16 ⁽⁻⁾	E1	9.50×10 ⁻⁴	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.000839 \ 12; \ \alpha(\mathrm{L}) = 9.27 \times 10^{-5} \ 13; \ \alpha(\mathrm{M}) = 1.628 \times 10^{-5} \ 23; \\ &\alpha(\mathrm{N}) = 2.38 \times 10^{-6} \ 4 \\ &\alpha(\mathrm{O}) = 1.370 \times 10^{-7} \ 20 \end{aligned} $
								Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ⁶³ Cu(³¹ P,3pn γ).
7024.2	$18^{(+)}$	281.9 [@]	100 [@]	6742.3	$17^{(+)}$	M1	0.01429	$\alpha(K)=0.01257 \ 18; \ \alpha(L)=0.001435 \ 20; \ \alpha(M)=0.000253 \ 4;$

 ∞

 $^{90}_{41} \mathrm{Nb}_{49}$ -8

	Adopted Levels, Gammas (continued)									
	γ ⁽⁹⁰ Nb) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [†]	α	Comments			
							$\alpha(N)=3.70\times10^{-5} 6; \alpha(O)=2.14\times10^{-6} 3$			
7351.0	(17^{-})	1774 4 3	100	$5576.5 (15^{-})$	0	4.10×10^{-4}	Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\lim \text{pol})$ in ${}^{\circ}\text{Cu}({}^{\circ}\text{P},3\text{pn}\gamma)$.			
7551.0	(17)	1774.4 5	100	5570.5 (15)	Q	4.19×10	$\alpha(N)=0.000195, \alpha(L)=2.12\times10^{-5}, \alpha(M)=3.75\times10^{-6}, \alpha(N)=3.47\times10^{-8}, \alpha(N)=3.21\times10^{-8}, 5$			
7768.1	19 ⁽⁺⁾	744.0 [@]	100 [@] 18	7024.2 18 ⁽⁺⁾	M1	1.41×10^{-3}	$\alpha(K) = 0.001241 \ 18; \ \alpha(L) = 0.0001380 \ 20; \ \alpha(M) = 2.43 \times 10^{-5} \ 4; \ \alpha(N) = 3.57 \times 10^{-6} \ 5; \ \alpha(O) = 2.09 \times 10^{-7} \ 3$			
							Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$.			
		1025.7 [@]	48 [@] 9	6742.3 17 ⁽⁺⁾	E2	6.80×10^{-4}	$\alpha(K)=0.000599 \ 9; \ \alpha(L)=6.72\times10^{-5} \ 10; \ \alpha(M)=1.182\times10^{-5} \ 17; \ \alpha(N)=1.727\times10^{-6} \ 25 \ \alpha(O)=9.92\times10^{-8} \ 14$			
							Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$.			
8094.8	(18 ⁻)	743.8 <i>3</i>	100	7351.0 (17 ⁻)	D	1.41×10^{-3}	$\alpha(K)=0.001242 \ 18; \ \alpha(L)=0.0001381 \ 20; \ \alpha(M)=2.43\times10^{-5} \ 4; \ \alpha(N)=3.57\times10^{-6} \ 5; \ \alpha(O)=2.09\times10^{-7} \ 3$			
8376.3		281.5 3	100	8094.8 (18 ⁻)						
7351.0 7768.1 8094.8 8376.3	(17 ⁻) 19 ⁽⁺⁾ (18 ⁻)	1774.4 <i>3</i> 744.0 [@] 1025.7 [@] 743.8 <i>3</i> 281.5 <i>3</i>	100 100 [@] 18 48 [@] 9 100 100	5576.5 (15 ⁻) 7024.2 18 ⁽⁺⁾ 6742.3 17 ⁽⁺⁾ 7351.0 (17 ⁻) 8094.8 (18 ⁻)	Q M1 E2 D	4.19×10^{-4} 1.41×10^{-3} 6.80×10^{-4} 1.41×10^{-3}	Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$. $\alpha(\text{K})=0.000193 \ 3; \ \alpha(\text{L})=2.12\times10^{-5} \ 3; \ \alpha(\text{M})=3.73\times10^{-6} \ 6; \ \alpha(\text{N})=5.47\times10^{-7} \ 8; \ \alpha(\text{O})=3.21\times10^{-8} \ 5$ $\alpha(\text{K})=0.001241 \ 18; \ \alpha(\text{L})=0.0001380 \ 20; \ \alpha(\text{M})=2.43\times10^{-5} \ 4; \ \alpha(\text{N})=3.57\times10^{-6} \ 5; \ \alpha(\text{O})=2.09\times10^{-7} \ 3$ Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$. $\alpha(\text{K})=0.000599 \ 9; \ \alpha(\text{L})=6.72\times10^{-5} \ 10; \ \alpha(\text{M})=1.182\times10^{-5} \ 17; \ \alpha(\text{N})=1.727\times10^{-6} \ \alpha(\text{O})=9.92\times10^{-8} \ 14$ Mult.: from $\gamma\gamma(\theta)$ and $\gamma(\text{lin pol})$ in ${}^{63}\text{Cu}({}^{31}\text{P},3\text{pn}\gamma)$. $\alpha(\text{K})=0.001242 \ 18; \ \alpha(\text{L})=0.0001381 \ 20; \ \alpha(\text{M})=2.43\times10^{-5} \ 4; \ \alpha(\text{N})=3.57\times10^{-6} \ 5; \ \alpha(\text{O})=2.09\times10^{-7} \ 3$			

[†] From ⁷⁶Ge(¹⁹F,5n γ), except where noted. [‡] From ⁹⁰Mo ε decay. [#] From ⁹⁰Zr(p,n γ). [@] From ⁶³Cu(³¹P,3pn γ), [&] From ⁸⁹Y(α ,3n γ),⁹⁰Zr(³He,p2n γ).

9

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{90}_{41}\text{Nb}_{49}$ -9

Adopted Levels, Gammas

Level Scheme		$I_{\gamma} < ~2\% \times I_{\gamma}^{max}$
		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
Intensities: Type not specified		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
	•	γ Decay (Uncertain)

Legend

 $^{90}_{41}\text{Nb}_{49}$

Adopted Levels, Gammas

 $^{90}_{41}\text{Nb}_{49}$

 $^{90}_{41}{
m Nb}_{49}$